目录
49 关系: 动物,學名 (植物),密蘇里植物園,展覽會,乙醇,微生物,保育生物學,化學,國立臺灣大學,國際植物命名法規,分子生物学,分類單元,礦物,福尔马林,科,種子,维管植物,组织 (生物学),细菌,群体遗传学,真空,真菌,生物多樣性,生物学,生物地理学,生态学,田野調查,甲醛,甘油,物候學,物理学,花,花粉,解剖学,藻類,蒴果,臺北帝國大學,苔藓植物,果,松球,松柏門,植物,植物園,植物標本館,樣本,溫室,族群,日治時期,教育。
- 生物银行
动物
動物是多細胞真核生命體中的一大類群,統稱為動物界。動物身體的基本形態會隨著其發育而變得固定,通常是在其胚胎發育時,但也有些動物會在其生命中有變態的過程。 大多數動物能自發且獨立地移動探索,只有極少數的動物(如珊瑚)是固定在一點無法移動。動物行為學是研究動物行為的科學,較著名的行為理論為康納德·洛倫茨提出的本能理論。 已發現的動物化石,多是在五億四千萬年前的寒武紀大爆發時的海洋物種。.
查看 標本和动物
學名 (植物)
#重定向 植物學名命名法.
查看 標本和學名 (植物)
密蘇里植物園
密蘇里植物園(Missouri Botanical Garden)是一座位於美國密蘇里州聖路易市的植物園,由美國慈善家亨利·蕭所成立,因此有蕭氏花園(Shaw's Garden)的別稱。.
查看 標本和密蘇里植物園
展覽會
展覽會(簡稱展覽) 是指陳列物品並於特定時間內供人參觀的集會,為一種大型項目管理及社交活動,其活動展示商品、藝術、公司組織形象及服務。 展覽會可能跟以前的墟市有類同,它們都有定期、組織者、参予者、参觀者等,他們之間互動交換資訊,達到認知、認同,甚至交易。 由於展覽會有多種多樣,所以可以派分稱為展銷會、贸易展览会、博覽會、路演等。 現代的展覽會中常見有参展商、主辦單位、表演嘉賓、贊助人、工程承判商、物流供應商、物業管理、展覽館業主等的互為關係。 其中有合約、場租、攤位、参展商守則、按金及罰則等。.
查看 標本和展覽會
乙醇
乙醇(Ethanol,結構简式:CH3CH2OH)是醇类的一种,是酒的主要成份,所以也俗稱酒精,有些地方俗稱火酒。化學結構通常縮寫為, 或 EtOH,Et代表乙基。乙醇易燃,是常用的燃料、溶剂和消毒剂,也用于有机合成。工業酒精含有少量有毒性的甲醇。医用酒精主要指体积浓度为75%左右(或质量浓度为70%)的乙醇,也包括医学上使用广泛的其他浓度酒精。 乙醇与甲醚是同分异构体。.
查看 標本和乙醇
微生物
微生物通常是所有难以用肉眼直接看到或看不清楚的一切微小生物的总称,包括细菌、真菌、放线菌、原生动物、藻类等有细胞结构的微生物,也包括病毒、支原体、衣原体等无完整细胞结构的微生物。一般需要借助显微镜来观察研究。微生物个体微小(直径小于0.1毫米),种类繁多(99%都是未知品種,且不斷增加),之於生態圈卻非常重要(能量來源與物質循環利用),是地球最多的生命形式,可以佔據上所有生物(這裡包含植物、海草等)總重量的一半之多,与人类日常生活、健康关系密切。微生物应用领域日益拓展,广泛应用在食品、医药、环保等领域。.
查看 標本和微生物
保育生物學
保育--生物學(conservation biology)又稱保護--生物學,是一門研究自然及地球上生物多樣性的學科,目的是要保護各種生物物種、棲息地和整個生態系統,避免其受到物種過快滅絕及生物交互作用崩潰的威脅。 它結合多個學術領域,包括科學、經濟學和。 保育倫理是基於保育生物學的發現。.
查看 標本和保育生物學
化學
化學是一門研究物質的性質、組成、結構、以及变化规律的基礎自然科學。化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。傳統的化學常常都是關於兩種物質接觸、變化,即化學反應,又或者是一種物質變成另一種物質的過程。這些變化有時會需要使用電磁波,當中電磁波負責激發化學作用。不過有時化學都不一定要關於物質之間的反應。光譜學研究物質與光之間的關係,而這些關係並不涉及化學反應。准确的说,化学的研究范围是包括分子、离子、原子、原子团在内的核-电子体系。 「化學」一詞,若單從字面解釋就是「變化的學問」之意。化学主要研究的是化学物质互相作用的科学。化學如同物理皆為自然科學之基礎科學。很多人稱化學為「中心科學」,因為化學為部分科學學門的核心,連接物理概念及其他科學,如材料科學、纳米技术、生物化學等。 研究化學的學者稱為化學家。在化學家的概念中一切物質都是由原子或比原子更細小的物質組成,如電子、中子和質子。但化学反应都是以原子或原子团为最小结构进行的。若干原子通过某种方式结合起来可构成更复杂的结构,例如分子、離子或者晶體。 當代的化學已發展出許多不同的學門,通常每一位化學家只專精於其中一、兩門。在中學課程中的化學,化學家稱為普通化學(Allgemeine Chemie,General Chemistry,Chimie Générale)。普通化學是化學的導論。普通化學課程提供初學者入門簡單的概念,相較於專業學門領域而言,並不甚深入和精確,但普通化學提供化學家直觀、圖像化的思維方式。即使是專業化學家,仍用這些簡單概念來解釋和思考一些複雜的知識。.
查看 標本和化學
國立臺灣大學
國立臺灣大學,簡稱臺大,該校是教育部高教深耕計畫中參與全球鏈結全校型計畫的4所學校之一,為臺灣第一所綜合大學、以及臺灣學生人數最多的高等教育機構 。大學建制始於1928年日治時代中期創校的「臺北帝國大學」,因為今日建制歷經戰後整併,故若拆開檢示,最早可追溯的部分為醫學院前身-1899年建立的「臺灣總督府醫學校」。由於帝大時期,日本人在行政、招生都佔有優勢地位(類似朝鮮日治時期的京城帝國大學),因此臺大校方在2007年以前不認同帝大的建校時間,以1945年戴運軌等人主持改制的國立臺灣大學為校史起點。,1945年中華民國接收臺灣後經改制與兩次易名始用現名。現設有11個學院、3個專業學院,下分54個學系、109個研究所;另設有30餘個各學術領域之國家級或校級研究中心,以及進修推廣部、臺大醫院等附屬機構。是全臺唯一學生人數超過三萬的高等教育學校。2018年QS世界大學排名:第76名,2018年泰晤士高等教育世界大學排名:第198名。 此外,臺大擁有臺北市境內的3大校區、以及多處散布於全臺的分支校區與校地,總面積約3萬4千公頃,佔臺灣土地總面積的百分之一。 臺大以自由主義學風著稱,並在臺灣具有重要學術地位。校友涵蓋諾貝爾獎、圖靈獎得主、4名中華民國總統(公民直選後的所有總統)與近百名的中央研究院院士;教職員則有多位各國科學或工程學院的院士。除了學術榮譽得主之外,臺大師生校友亦包括數百位行政院院長、縣市首長、部會首長、立法委員、縣市議員等政界人士,對臺灣社會具高度影響力。 2015年1月與國立臺灣師範大學、國立臺灣科技大學三校結盟合組國立臺灣大學聯盟,並於2016年3月31日正式核定成為國立臺灣大學系統。.
查看 標本和國立臺灣大學
國際植物命名法規
#重定向 国际藻类、真菌、植物命名法规.
查看 標本和國際植物命名法規
分子生物学
分子生物学(Molecular biology)是对生物在分子層次上的研究。这是一门生物学和化学之间跨学科的研究,其研究领域涵盖了遗传学、生物化学和生物物理学等学科。分子生物学主要致力于对细胞中不同系统之间相互作用的理解,包括DNA,RNA和蛋白质生物合成之间的关系以及了解它们之间的相互作用是如何被调控的。.
查看 標本和分子生物学
分類單元
分類單元(分類群,Taxon)是指分類學上的一個群體 ,「國際植物命名法規中對此字的釋義較簡單,不管何種階層,是分類學上的一個群體」。,國際動物命名規約對於分類群的解釋較多,定義分類為「一個分類學上的單元,不管是否具有學名;一個被認為具親緣關係的物種之一個族群或多個族群,具有能分別出相似的其他一群之共同的特徵之單元。一個分類群包含了較低階層的所有分類群及其中的個體。」。,不管處哪一個分類階層(taxonomic rank),稱此群體為分類群。.
查看 標本和分類單元
礦物
物是是指在地质作用下天然形成的結晶狀纯净物(单质或化合物)。绝对的纯净物是不存在的,所以这里的纯净物是指物质化學成份相对单一的物质。矿物是组成岩石的基础(像石英、长石、方解石都是常见的造岩矿物),但礦物和岩石不同,礦物可以用其化學式表示,而岩石是由許多礦物及非礦物所合成,沒有一定的化學式。 礦物多半是非生物產生的无机化合物,一般为固体,有有序的原子結構,但也有液态的矿物,如汞(水銀)。有關礦物的精確定義尚有爭議,有爭議的是非生物產生,以及有序原子結構這二個條件。像褐鐵礦、黑曜岩等類似礦物,但沒有的物筫,會稱為準礦物。 研究礦物的自然科學稱為礦物學。世界上超過5300種,其中5,070種已由国际矿物学学会(IMA)批准過。地壳中有超過75%由是矽和氧組成,因此許多的矿物是硅酸盐矿物。礦物可以依其物理性質及化學性質區分,可以依其化學成份及晶體結構分為幾類,而在礦物形成時的溫度壓力等因素會影響其中一些性質。岩石所在的溫度、壓力及其主成份的變化,都會影響其中的礦物。也有可能礦物的主成份不變,但其中的礦物因溫度壓力改變而變化。 礦物可以用許多的物理性質來描述,而這些性質也和其化學結構及組成有關。常見的礦物物理性質有晶體結構及晶体惯态、硬度、光澤、透明度、顏色、條痕、韌性、解理、斷口、裂理(parting)及比重。進一步的特性包括對酸的反應、磁性、氣味或味道,以及放射性。 礦物可以依其主要化學成份分類,最主要的兩種分類系統分別是Strunz礦物分類及Dana礦物分類。矽酸鹽可以依其化學結構的同質多晶形性再細分為六小類。所有的矽酸鹽都有4−的矽酸根四面體,是一個矽原子和四個氧原子以四面體的方式鍵結。矽酸鹽又可以分為原矽酸鹽(orthosilicates,矽酸根沒有聚合)、二矽酸鹽(disilicates,二個矽酸根互相聚合)、环状硅酸盐(cyclosilicates,環狀的矽酸根)、链状硅酸盐(inosilicates,鏈狀的矽酸根)、层状硅酸盐(phyllosilicates,層狀的矽酸根)及網矽酸鹽(tectosilicates,三維的矽酸根結構)。其他重要的礦物分類有、、、、碳酸鹽、、。.
查看 標本和礦物
福尔马林
福尔马林(Formalin),是甲醛含量为35%至40%(重量百分比為37%;體積百分比為40%)的水溶液,也加入10%~15%的甲醇防止聚合。具有防腐、消毒和漂白的功能,不同领域各有其作用,但福爾馬林會散發出刺鼻的氣味。甲醛被國際癌症研究中心(IARC)列為明確人類致癌物質,影響人體健康。.
查看 標本和福尔马林
科
科可指:.
查看 標本和科
種子
种子是种子植物的胚珠经受精后长成的结构,一般有种皮、胚和胚乳等组成。胚是种子中最主要的部分,萌发后长成新的个体。胚乳含有营养物质。 种子是裸子植物、被子植物特有的繁殖体,由胚珠经过传粉受精形成。.
查看 標本和種子
维管植物
维管植物(或作--)是指具有维管组织的植物,這些組織中可將液體作快速的流動,在體內运输水分和养分,它包括蕨类植物和种子植物。种子植物又分为裸子植物和被子植物。.
查看 標本和维管植物
组织 (生物学)
组织是生物学中介于细胞和器官之间的层次,它由许多属于同一器官的形态相似的细胞以及细胞间质组成,并且具有一定功能。不同的组织分工合作形成器官。研究组织的学科是组织学,研究其病态的学科是组织病理学。.
查看 標本和组织 (生物学)
细菌
細菌(学名:Bacteria)是生物的主要類群之一,屬於細菌域。也是所有生物中數量最多的一類,據估計,其總數約有5×1030個。細菌的個體非常小,目前已知最小的細菌只有0.2微米長,因此大多--能在顯微鏡下看到它們;而世界上最大的細菌可以用肉眼直接看見,有0.2-0.6毫米大,是一種叫納米比亞嗜硫珠菌的細菌。細菌一般是單細胞,細胞結構簡單,缺乏細胞核以及膜狀胞器,例如粒線體和葉綠體。基於這些特徵,細菌屬於原核生物。原核生物中還有另一類生物稱做古細菌,是科學家依據演化關係而另闢的類別。為了區別,本類生物也被稱做真細菌(Eubacteria)。古細菌與真細菌在生活環境、營養方式以及遺傳上有所不同。細菌的形狀相當多樣,主要有球狀、桿狀,以及螺旋狀。 細菌廣泛分佈於土壤和水中,或著與其他生物共生。人體身上也帶有相當多的細菌。據估計,人體內及表皮上的細菌細胞總數約是人體細胞總數的十倍。此外,也有部分種類分布在極端的環境中,例如溫泉,甚至是放射性廢棄物中,它們被歸類為嗜極生物,其中最著名的種類之一是海棲熱袍菌,科學家是在意大利的一座海底火山中發現這種細菌的。甚至在太空梭上也能生長。然而,細菌種類是如此多,科學家研究過並命名的種類只佔其中的小部份。細菌域下所有門中,只有約一半能在實驗室培養的種類。 細菌的營養方式有自养及异养,其中异养的腐生細菌是生态系统中重要的分解者,使碳循環能順利進行。部分細菌會進行固氮作用,使氮元素得以轉換為生物能利用的形式。細菌也對人類活動有很大的影響。一方面,細菌是許多疾病的病原體,包括肺結核、淋病、炭疽病、梅毒、鼠疫、砂眼等疾病都是由細菌所引發。然而,人類也時常利用細菌,例如乳酪及酸奶和酒釀的製作、部分抗生素的製造、廢水的處理等,都與細菌有關。在生物科技領域中,細菌有也著廣泛的運用。 總的來說,這世界上約有5×1030 隻細菌。其生物量遠大於世界上所有動植物體內細胞數量的總和。細菌還在營養素循環上扮演相當重要的角色,像是微生物造成的腐敗作用,就與氮循環相關。而在海底火山和在冷泉中,細菌則是靠硫化氫和甲烷來產生能量。2013年3月17日,研究者在深約11公里的馬里亞納海溝中發現了細菌。其他研究則指出,在美國西北邊離岸2600米的海床下580米深處,仍有許多的微生物根據這些研究人員的說法:「你可以在任何地方找到他們,他們的適應力遠比你想像的還要強,可以在任何地方存活。.
查看 標本和细菌
群体遗传学
群体遗传学()又稱--遺傳學或種--群遺傳學,是研究在演化动力的影响下,等位基因的分布和改变。演化动力包括自然选择、性選擇、遺傳漂變、突变以及基因流動五种。通俗而言,群体遗传学则是在种群水平上进行研究的遗传学分支。它也研究遗传重组,种群的分类,以及种群的空间结构。同样地,群体遗传学试图解释诸如适应和物种形成现象的理论。 群体遗传学是现代进化综论出现的一个重要成分。该学科的主要创始人是休厄尔·赖特、约翰·伯顿·桑德森·霍尔丹和羅納德·費雪,他们还曾经为的相关理论建立基础。 传统上是高度数学化的学科,现代的群体遗传学包括理论的,实验室的和实地的工作。计算方法常使用,自1980年代发挥了核心作用。.
查看 標本和群体遗传学
真空
真空是一種不存在任何物質的空間狀態,是一種物理現象。在真空中,聲波因為沒有介質而無法傳遞,但電磁波的傳遞不受真空的影響。粗略地說,真空是指在一區域之內的氣壓遠遠小於大氣壓力。真空常用帕斯卡(Pascal)或托爾(Torr)做為壓力的單位。目前在自然環境裡,只有外太空堪稱最接近真空的空間。 真空下的氣壓為零,有些情形下,氣壓小於大氣壓力,但不為零,此時稱為局部真空,有些也簡稱為真空。 在局部真空的情形下,若其他條件不變,氣壓越低,表示越接近真空。例如一般的吸塵器的吸力可以使氣壓降低20%。也可以以產生更接近真空的條件,像化學、物理及工程常見的腔體,其氣壓可以到大氣壓力的10−12,粒子密度為100粒子/cm3,對應約100粒子/cm3。外太空更接近真空,相當於平均一立方公尺只有幾個氫原子,估計本星系群的密度為 for the Local Group,原子質量單位為,大約一立方公尺有40個原子。根據現代物理學的了解,即使空間中的所有物質都移除了,因為量子涨落、暗能量、經過的γ-射线和宇宙射线、微中子等現象,空間仍然不會是完全的真空。在近代的粒子物理中,將視為是物質的基態。 自古希臘起,真空就是常帶來爭議的哲學議題,但到了十七世紀西方才開始實驗上的研究。埃萬傑利斯塔·托里切利在1643年進行了第一個真空的實驗,而隨著他大氣壓力理論的出現,也開始產生其他的實驗技術。托里切利真空是將一端封閉的長玻璃容器(超過76公分)中裝滿水銀,倒置在裝滿水銀的容器中,長玻璃容器上方的真空即為托里切利真空。 20世紀在電燈泡及真空管問世後,真空變成一個有價值的工業工具,也出現了許多產生真空的技術。载人航天的進展也讓真空對人類及其他生物的影響開始感興趣。.
查看 標本和真空
真菌
真菌即真菌界(学名:Fungi)生物的通称,又稱菌物界,是真核生物中的一大類群,包含酵母、黴菌之類的微生物,及最為人熟知的菇類。真菌自成一界,與植物、動物和原生生物相區別。真菌和其他三種生物最大不同之處在於,真菌的細胞有含幾丁質為主要成分的細胞壁,而植物的細胞壁主要是由纖維素組成。卵菌和黏菌、水黴菌等在構造上和真菌相似,但都不屬於真菌,而是屬於原生生物。研究真菌的學科稱為真菌學,通常被視為植物學的一個分支。但事實顯示,真菌和動物之間的關係要比和植物之間更加親近。 雖然真菌遍及全世界,但大部分的真菌不顯眼,因為它們體積小,而且它們會生活在土壤內、腐質上、以及與植物、動物或其他真菌共生。部分菇類及黴菌可能會在結成孢子時變得較顯眼。真菌在有機物質的分解中扮演著極重要的角色,對養分的循環及交換有著基礎的作用。真菌從很久以前便被當做直接的食物來源(如菇類及松露)、麵包的膨鬆劑及發酵各種食品(如葡萄酒、啤酒及醬油)。1940年代後,真菌亦被用來製造抗生素,而現在,許多的酵素是由真菌所製造的,並運用在工業上。真菌亦被當做生物農藥,用來抑制雜草、植物疾病及害蟲。真菌中的許多物種會產生有的物質,稱為(如生物鹼和聚酮),對包括人類在內的動物有毒。一些物種的孢子含有精神藥物的成份,被用在娛樂及古代的宗教儀式上。真菌可以分解人造的物質及建物,並使人類及其他動物致病。因真菌病(如)或食物腐敗引起的作物損失會對人類的食物供給和區域經濟產生很大的影響。 真菌各門的物種之間不論是在生態、生物生命周期、及形態(從單細胞水生的壺菌到巨大的菇類)都有很巨大的差別。人類對真菌各門真正的生物多樣性了解得很少,預估約有150萬-500萬個物種,其中被正式分類的則只有約5%。自從18、19世紀,卡爾·林奈、克里斯蒂安·亨德里克·珀森及伊利阿斯·馬格努斯·弗里斯等人在分類學上有了開創性的研究成果之後,真菌便已依其形態(如孢子顏色或微觀構造等特徵)或依生理學給予分類。在分子遺傳學上的進展開啟了將DNA測序加入分類學的道路,這有時會挑戰傳統依形態及其他特徵分類的類群。最近十幾年來在系统发生学上的研究已幫助真菌界重新分類,共分為一個亞界、七個門、及十個亞門。.
查看 標本和真菌
生物多樣性
生物多樣性是生命變化的程度。這可以是指在一個區域、生物群系或行星範圍之內的基因變化、物種變化或生態系統變化。陸地生物多樣性在靠近赤道的低緯度地區往往是最高的,這似乎是由於溫暖的氣候和高初級生產的結果。海洋生物多樣性在西太平洋沿海海岸,和在各大洋中緯度帶往往是最高的,在那裡海洋表面溫度最高。 生物多樣性是生物界一個較新的概念。簡單來說,是指所有不同種類的生命,生活在一個地球上,其相互交替、影響令地球生態得到平衡。亦可解釋為:單位面積內生物種種類的數目,表示生物群落中顯示生態地位多樣化與基因變異。最後,生物多樣性是為維護生態平衡,且有公約。 生物多樣性包括三個層面:遺傳多样性(基因多樣性)、物种多样性、生态系统多样性。.
查看 標本和生物多樣性
生物学
生物学研究各種生命(上图) 大肠杆菌、瞪羚、(下图)大角金龟甲虫 、蕨類植物 生物學(βιολογία;biologia;德語、法語:biologie;biology)或稱生物科學(biological sciences)、生命科學(life sciences),是自然科學的一大門類,由經驗主義出發,廣泛研究生命的所有方面,包括生命起源、演化、分佈、構造、發育、功能、行為、與環境的互動關系,以及生物分類學等。現代生物學是一個龐大而兼收並蓄的領域,由許多分支和分支學科組成。然而,盡管生物學的範圍很廣,在它裡面有某些一般和統一概念支配一切的學習和研究,把它整合成單一的,和連貫的領域。在總體上,生物以細胞作為生命的基本單位,基因作為遺傳的基本單元,和進化是推動新物種的合成和創建的引擎。今天人們還了解,所有生物體的生存以消耗和轉換能量,調節體內環境以維持穩定的和重要的生命條件。 生物學分支學科被研究生物體的規模所定義,和研究它們使用的方法所定義:生物化學考察生命的基本化學;分子生物學研究生物分子之間錯綜復雜的關系;植物學研究植物的生物學;細胞生物學檢查所有生命的基本組成單位,細胞;生理學檢查組織,器官,和生物體的器官系統的物理和化學的功能;進化生物學考察了生命的多樣性的產生過程;和生態學考察生物在其環境如何相互作用。最終能夠達到治療診斷遺傳病、提高農作物產量、改善人類生活、保護環境等目的。.
查看 標本和生物学
生物地理学
生物地理學是生物學與地理學間的邊緣學科。研究生物在時間和空間上分布的一門學科。即生物群落及其组成成分,它们在地球表面的分布情况及形成原因。生物地理學研究範圍包括:動物地理學、植物地理學、海洋生物地理學、古生物地理學。生物的單體還有群體會隨著緯度、海拔、隔離以及棲息地面積地理梯度之轉變而變化生物的基因Brown University,.
查看 標本和生物地理学
生态学
德國生物學家恩斯特·海克爾(左)和丹麦植物学家尤金纽斯·瓦尔明(右),两位生態学的建立者 生态学(Ökologie),是德国生物学家恩斯特·海克尔于1866年定义的一个概念:生态学是研究生物体与其周围环境(包括非生物环境和生物环境)相互关系的科学。德语Ökologie(最初:Oecologie)是由希腊语词汇Οικοθ(家)和Λογοθ(学科)组成的,意思是“研究居住在同一自然环境中的动物(Lebewesen)的学科”,目前已经发展为“研究生物与其环境之间的相互关系的科学”。环境包括生物环境和非生物环境,生物环境是指生物物种之间和物种内部各个体之间的关系,非生物环境包括自然环境:土壤、岩石、水、空气、温度、湿度等。 在1935年英国的Tansley提出了生态系统的概念之后,美国的年轻学者Lindeman在对Mondota湖生态系统详细考察之后提出了生态金字塔能量转换的“十分之一定律”,也就是同一條食物鏈上各營養級之間能量的轉化效率平均大約為百分之十左右。由此,生态学成为一门有自己的研究对象、任务和方法的比较完整和独立的学科。近年来,生态学已经创立了自己独立研究的理论主体,即从生物个体与环境直接影响的小环境到生态系统不同层级的有机体与环境关系的理论。它们的研究方法经过描述——实验——物质定量三个过程。系统论、控制论、信息论的概念和方法的引入,促进了生态学理论的发展。如今,由于与人类生存与发展的紧密相关而产生了多个生态学的研究热点,如生物多样性的研究、全球气候变化的研究、受损生态系统的恢复与重建研究、可持续发展研究等。 生态学是生物学的一个分支,生物学的研究对象向微观和宏观两个方面发展,微观方面向分子生物学方向发展,生态学是向研究宏观方向发展的分支,是以生物个体、种群、群落、生态系统直到整个生物圈作为它的研究对象。生态学也是一个综合性的学科,需要利用地质学、地理学、气象学、土壤学、化学、物理学等各方面的研究方法和知识,是将生物群落和其生活的环境作为一个互相之间不断地进行物质循环和能量流动的整体来进行研究。.
查看 標本和生态学
田野調查
野調查(Field research),又稱田野研究(field study)或田野工作(Fieldwork),在中文裡另有野外調查、實地考察等稱,為對於描述原始資料蒐集的概括術語,其所應用的領域包括民俗学、考古學、生物學、生態學、環境科學、地理學、地質學、地形學、地球物理學、古生物學、人類學、語言學、哲學、建築學、及社會學等自然或社會科學領域。與其他在實驗室准控制狀態下環境的研究相比,田野調查主要於野外實地進行。 根據研究對象的生亡與否,以及它們的存在地點位於居住棲息地或埋於土下,田野調查的實質內容也會有所差別。化石與考古遺址的發掘均包含實地工作,其他如訪問或觀察人們以學習他們的語言、民俗、和他們的社會結構等過程也都包含在內。某些狀況,尤其是研究的主題為人類本身的時候,工作的擬定必須再經過設計,以避免觀察者效應或是過度理論化或過於理想化該實質文化活動的風險。.
查看 標本和田野調查
甲醛
醛(Formaldehyde),化学式HCHO,質量30.03,又称蚁醛,天然存在的有機化合物。有特殊刺激气味的无色气体,对人眼、鼻等有刺激作用。體積百分比40%的甲醛水溶液稱100%福馬林(Formalin)。气体相对密度1.067(空气.
查看 標本和甲醛
甘油
丙三醇又称甘油,結構簡式為HOCH2CHOHCH2OH或C3H5(OH)3,分子式為C3H8O3。.
查看 標本和甘油
物候學
物候學(英語:phenology 源於希臘文:phainomai(φαινομαι-顯示、見現))為研究氣候與生態事件(特指生物的某現象)互相時間關係之學問。這門科學主要關心生物事件之變化在年循環裡出現的日期。例如:《夏小正》裡提及的「正月啟蟄,雁北鄉」、「七月秀雚葦,狸子造肆」等。 在生態學科學文獻裡,這個辭也普遍應用在其他較短時段的生物現象,例如季節性的物候:某物種開始發生於4四月,於9月死亡(消失)。 由於生物生長的現象常常受到溫度的影響,且敏感,因此溫度造成物候變化成為一個觀察歷史氣候記錄的重要指標,尤其是氣候變遷及全球暖化的研究議題。例如:歐洲已藉由過去500年來的葡萄產量,建立一垂直溫度紀錄。 在無法利用精確儀器實際量測全球暖化的現象時,物候學的研究提供了一個精準的記錄。.
查看 標本和物候學
物理学
物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.
查看 標本和物理学
花
花是被子植物(被子植物门植物,又称有花植物或開花植物)的繁殖器官,其生物学功能的是结合雄性精细胞与雌性卵细胞以产生种子。这一进程始於传粉,然後是受精,从而形成种子并加以传播。对於高等植物而言,种子便是其下一代,而且是各物种在自然分布的主要手段。同一植物上着生的花的组合称为花序。 “花”在生活中亦常称为“花朵”或“花卉”。广义的花卉可指一切具有观赏价值的植物(或人工栽插的盆景),而狭义上则单指所有的開花植物。 花卉一直广受人们的喜爱和使用,主要用於觀賞,还能當食材或提煉原料。.
查看 標本和花
花粉
花粉(pollen)是種子植物的微小孢子堆,成熟的花粉粒實為其小配子體,能產生雄性配子。花粉由雄蕊中的花藥產生,由各種方法到達雌蕊,使胚珠授粉。.
查看 標本和花粉
解剖学
解剖学(英語:Anatomy)是涉及生命体的结构和组织的生物学分支学科。解剖学和胚胎學、比較解剖學、進化生物學和系統發育有密切關係,而這些也可以看出解剖結構在即時(胚胎學)和長期(演化)時間尺度下的變化。人体解剖学是醫學的基礎學科之一。 解剖学也可以分為微觀尺度及巨觀尺度。巨觀尺度的解剖学即為,是用肉眼來觀察動物的身體及器官。大體解剖學也包括,而其他的部位常利用剖割的方法來進行研究。顯微鏡解剖学是用光學儀器(如顯微鏡)來研究組織(組織學)、細胞及胞器。 解剖学史的特點是對人體結構及器官功能的漸進式了解。其方法也有很大的進展,從一早期檢驗動物及人的屍體,一直到二十世紀的醫學成像技術,包括,超音波和核磁共振成像技術。 解剖学和生理学都是研究器官以及各部份的結構及,因此很自然的會用進行研究。 如果解剖學單指人體解剖學,這時候解剖學會依照各器官系統性地分類,而不是依部位來陳述。每篇解剖學的文章首先包括一个器官或系统。例如:神经、动脉、心臟等的结构描述,根據在人體找到甚麼而定。就此而論,解剖學文章有双重目的;首先,提供關于結構的足夠資料,令文章在生理学、外科、內科和病理学方面均有可謮性;第二,给非专家的查詢者或在某門科学分支上工作的人提供建立解剖學的現代科學基礎的主要理论。.
查看 標本和解剖学
藻類
藻類,又稱作懸浮植物,包括數種不同類以光合作用產生能量的生物,其中有屬於真核細胞的藻類,也有屬於原核細胞的藻類。它們一般被認為是簡單的植物,並且一些藻類與比較高等的植物有關。雖然其他藻類看似從藍綠藻得到光合作用的能力,但是在演化上有獨立的分支。所有藻類缺乏真的根、莖、葉和其他可在高等植物上發現的組織構造。藻類與細菌和原生動物不同之處,是藻類產生能量的方式為光合自營。 藻類涵蓋了原核生物、原生生物界和植物界。原核生物界中的藻類有生活在無機動物中的原核綠藻。屬於原生生物界中的藻類有裸藻門、甲藻門(或稱渦鞭毛藻)、隱藻門、金黃藻門(包括矽藻等浮游藻)、紅藻門、綠藻門和褐藻門。而生殖構造複雜的輪藻門則屬於植物界。屬於大型藻者一般僅有紅藻門、綠藻門和褐藻門等為大型肉眼可顯而易見之固著性藻類。此類大型藻幾乎99%以上之種類棲息於海水環境中,故大型藻多以海藻稱之。另外,有些肉眼可見的固著性藍綠藻和少數之矽藻嚴格而言應該亦屬於大型藻的範圍。.
查看 標本和藻類
蒴果
蒴果(Capsule),一种由合生心皮的複雌蕊发育而成的果实,子房一室或多室,每室含种子多数。蒴果植物包括有:馬拉巴栗、串錢柳、野牡丹、尤加利、台灣欒樹、九芎、大花紫薇、杜鵑花、日日櫻、黃槿、月桃、木芙蓉、秋海棠、木棉等。.
查看 標本和蒴果
臺北帝國大學
臺北帝國大學,簡稱臺大、帝大、臺北帝大,設立於1928年3月17日,是一所位於日治臺灣臺北州臺北市的舊制(大日本帝國)國立綜合大學。為1945年改制的國立臺灣大學(臺大)前身,以及今日國立中興大學(興大)前身的一部分(帝大附屬農林專門部)。校本部所在地為富田町47番地。 帝大籌備階段以「臺灣大學」、「臺灣帝國大學」的校名最常用,但為避免「臺灣帝國的大學」的誤解,遂定名為「臺北帝國大學」。事實上,9所帝國大學當中,就有6所是以「城市」定名的。 從1988年臺灣解嚴開始,臺大已然以1928年帝大創校作為慶祝的對象,於1988年11月臺大出版了《榮耀與分享: 台大創校六十週年特刊》、1990年《歡聚與期勉: 台大創校六十大慶活動紀實》兩書,雖然1995年又出版了《臺大五十年》讓人有些錯亂,也許政治敏感性的確影響計算校齡的方式。 在2007年,帝大校史獲得臺大校方追認,臺大的起點從1945年(民國三十四年)前推至1928年(昭和三年,民國十七年),舉辦80週年校慶。.
查看 標本和臺北帝國大學
苔藓植物
苔蘚植物,是非維管植物中的有胚植物:它們有組織器官以及封閉的生殖系統,但缺少運輸水分的維管束。它們沒有花朵也不製造種子,而是經由孢子來繁殖。.
查看 標本和苔藓植物
果
果可以指:.
查看 標本和果
松球
松球,亦稱毬果、松塔,是屬松柏門植物具有的,包含生殖結構的植物组织。大家熟悉木質錐錐孔產生種子。产生花粉的雄性锥体通常是草本的,甚至在完全成熟时也不那么明显。锥体的单个板称为鳞片。.
查看 標本和松球
松柏門
松柏門(学名:Pinophyta)又名毬果植物門,是植物界裡13或14個門之中的一個,屬於裸子植物,為結有毬果的維管束植物;其中所有已滅絕的物種都是木本植物,現存的大部份是樹木,但有少部份為灌木。典型的松柏門植物包含有香柏、柏、花旗松、冷杉、刺柏、貝殼杉、落葉松、松、紅杉、雲杉和紅豆杉等Campbell, Reece, "Phylum Coniferophyta."Biology.
查看 標本和松柏門
植物
植物(Plantae)是生命的主要形態之一,並包含了如乔木、灌木、藤類、青草、蕨類及綠藻等熟悉的生物。種子植物、苔蘚植物、蕨類植物和擬蕨類等植物,據估計現存大約有350000個物種。直至2004年,其中的287655個物種已被確認,有258650種開花植物15000種苔蘚植物(参见条目中表格)。綠色植物大部份的能源是經由光合作用從太陽光中得到的。.
查看 標本和植物
植物園
植物園或植物(學)公園是一个收集、繁殖和研究植物的科学研究机构,同时也为社会提供修养和教育的服务。植物园中的植物一般按其不同的种类有规划地培养,虽然植物园在布局和收藏上一般也考虑到美学观念,但其科学使用价值是最主要,这是它与一般的观赏花园的区别。大多数植物园由大学或专门的科学研究机构管理。 目前全世界150多个国家分布有2400多个植物园。.
查看 標本和植物園
植物標本館
植物標本館是一個收集保存植物標本的地方,這些標本通常是乾製、壓製的腊葉標本,第525-526頁。。 標本可存放在不同的建築物,不僅是科學研究所,而是任何可用作研究這些標本的地方。一個植物標本室的標本,經常被用來作為植物分類學的參考材料,當中包括一些模式標本。.
查看 標本和植物標本館
樣本
#重定向 样品.
查看 標本和樣本
溫室
溫室,又稱玻璃溫室或暖房,是一座專用作種植植物的建築物。它的建造物料是玻璃或塑料,溫室會因太陽發出的電磁輻射而加熱,使溫室內的植物、泥土、空氣等變暖,因為可以提早種植也比較不受氣候影響,在亞熱帶和溫帶國家很流行,在乾燥地區還有防止水份過度蒸發的效果。 玻璃被用作為溫室的建造物料是因為它是不同光學頻譜的其中一種可選性的傳輸媒介,而它的另一個作用是可以集中抓住能量,使溫室內的植物、空氣變暖。這些熱空氣會下沉於地面和防止上升和流動,因此若果例如在溫室屋頂上只打開一個小窗口,溫室溫度就會顯著地下降,這個原理就仿如一個基本的自動排氣冷卻系統。溫室的興建就是可以抓住電磁輻射和防止對流現象。因此,用于温室的玻璃作为气流屏障,其效果是捕获温室内的能量。靠近地面被加热的空气, 就被防止无限地上升和流失。虽然会发生由于通过玻璃和其他建筑材料热传导的热损失,温室内的净能量(及因此温度)仍是增加的。.
查看 標本和溫室
族群
族群(Ethnic Group),是指一群人,他們認為彼此共享了相同的祖先、血緣、外貌、歷史、文化、習俗、语言、地域、宗教、生活習慣與國家體驗等,因此形成一個共同的群體。為區分我族及「他者」的分類方式之一。族群含义在20世紀後有轉變,從原來以少數民族或少數族裔的意思,到後來以文化特徵區分,而最新的看法則认为族群是社會過程後的產生的結果。因此,族群可能因歷史及時空環境,基于歷史、文化、语言、地域、宗教、血緣祖先認同、行为、生物/外貌特征而形成「一群」与其它有所区别的群体。p.456 "The ideas of ethnicity and ethnic group have a long history, often related to "otherness".
查看 標本和族群
日治時期
日治時期、日治時代、日本時代、日據時代或日本殖民統治時期可以指:.
查看 標本和日治時期
教育
教育,通常有廣義和狹義兩種概念。廣義的教育泛指一切傳播和學習人類文明成果,即各種知識、技能和社會生活經驗,以促進個體社會化和社會個性化的社會實踐活動,產生於人類社會初始階段;狹義的教育專指學校教育,即制度化教育。廣義的教育則包含社會待人處事的方方面面,例如家教、禮儀等文明與社會的教育。 在学校教育中,教师直接向学生教授一系列课程,包括阅读、写作、数学、科学、历史等。与之相对地,职业教育中只教授单一的职业技能。除此之外,人们还可以从其他渠道获得非正式的教育,如博物馆、图书馆、互联网,以及生活中的经验。其他一些新的教育方式也逐渐出现。 迄今,受教育权已被认为是一项基本人权,1952年发表的《欧洲人权公约》和联合国1966年发表的《经济、社会及文化权利国际公约》均承认此项权利。.
查看 標本和教育
另见
生物银行
- 標本