我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

无限小数

指数 无限小数

无限小数,是指小数部分的位数无限的数字,与有限小数相对。 无限小数有两种类型:.

目录

  1. 6 关系: 小数循环小数分數無理數有理数有限小数

小数

小数,是實数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。.

查看 无限小数和小数

循环小数

循环小数,是從小數部分的某一位起,一個數字或幾個數字,依次不斷地重複出現的小數。可分为有限循环小数和无限循环小数。.

查看 无限小数和循环小数

分數

分數(fraction)是用分式(分數式)表達成 \frac 的数(a, b \in Z, b\neq 0)。在上式之中,b 稱為分母(Denominator)而 a 稱為分子(Numerator),可視為某件事物平均分成 b 份中佔 a 分,讀作「b 分之 a」。中間的線稱為分線或分数线。有時人們會用 a/b 來表示分數。.

查看 无限小数和分數

無理數

無理數是指除有理数以外的实数,當中的「理」字来自于拉丁语的rationalis,意思是「理解」,实际是拉丁文对于logos「说明」的翻译,是指无法用两个整数的比来说明一个无理数。 非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環,即无限不循环小数。常見的無理數有大部分的平方根、π和e(其中後兩者同時為超越數)等。無理數的另一特徵是無限的連分數表達式。 傳說中,无理数最早由畢達哥拉斯學派弟子希伯斯发现。他以幾何方法證明\sqrt無法用整数及分數表示。而畢達哥拉斯深信任意数均可用整数及分数表示,不相信無理數的存在。後來希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另見第一次數學危機。 無理數可以通過有理數的分划的概念進行定義。.

查看 无限小数和無理數

有理数

数学上,可以表达为两个整数比的数(a/b, b≠0)被定义为有理数,例如3/8,0.75(可被表达为3/4)。整数和分数统称为有理数。与有理数对应的是无理数,如\sqrt无法用整数比表示。 有理数与分數的区别,分數是一种表示比值的记法,如 分數\sqrt/2 是无理数。 所有有理数的集合表示为Q,Q+,或\mathbb。定义如下: 有理数的小数部分有限或为循环。不是有理數的實數遂稱為無理數。.

查看 无限小数和有理数

有限小数

有限小数,是指小数部分的位数有限的数字,与无限小数相对。有限小数都属于有理数,可以化成分數的形式。 9.8、1.0、1.1212121212、3.14等数字都是有限小数。 Category:有理数 ja:小数#有限小数.

查看 无限小数和有限小数