目录
28 关系: 古典群,右手定則,向量,子群,定向 (幾何),定向纏結,循環群,刚体,單位元,几何学,內積,立方體,純量,线性子空间,线性映射,经典力学,结合律,群,角度,长度,逆元素,李群,欧几里得空间,歐拉旋轉定理,正十二面體,正交群,流形,旋转。
古典群
#重定向 典型群.
查看 旋轉群和古典群
右手定則
右手定則(Right-hand rule)是一個在數學及物理學上使用的定則。是由英國電機工程師約翰·弗萊明(John Fleming)於十九世紀末期發明的定則,用來幫助他的學生轻松地求出移動於磁場的導體所產生的動生電動勢的方向 。 當設定三個相互垂直的向量時,可以有兩種不同的選擇:右手系統或左手系統。因此,假若遇到這類問題時,必需明確地指出是採用哪一種系統。.
查看 旋轉群和右手定則
向量
向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.
查看 旋轉群和向量
子群
假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.
查看 旋轉群和子群
定向 (幾何)
在三維空間裏,直軸(直線)、直軸段、有向軸、有向軸段(向量)的定向是由它們與參考系的參考軸之夾角設定的。也可以用別的方法,例如方向餘弦方法。 在三維空間裏,一個平面的定向是垂直於此平面的一個向量的定向。 在三維空間裏,剛體的定向涉及整個剛體的定位。假若一個剛體內中一點已被固定,剛體仍舊能夠繞著固定點旋轉。單獨固定點的位置並不能完全地描述剛體的位置。一個剛體的位置有兩個部分:平移位置與角位置。平移位置可以用設定於剛體的一個參考點來表示。這參考點時常會是剛體的質心或剛體與地面的接觸點。角位置,或定向,通常由剛體的體軸與空間坐標軸的夾角來設定;或者,定義固定於剛體的坐標軸為體坐標軸,由空間坐標軸轉動至體坐標軸所需的轉動角參數設定。在經典力學裏,有幾個工具可以用來描述三維空間的剛體轉動。有些可以延伸至四維或多維空間。.
查看 旋轉群和定向 (幾何)
定向纏結
數學與物理學中,定向纏結(orientation entanglement)被用來提供旋量幾何的直觀概念或用來展示特殊正交群無法是單連通的。.
查看 旋轉群和定向纏結
循環群
在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.
查看 旋轉群和循環群
刚体
在物理学裏,理想刚体(rigid body)是一種有限尺寸,可以忽略形变的固体。不论是否感受到外力,在刚体內部,質點與質點之间的距离都不会改变。这种理想模型适用条件是,运动过程比固体中的弹性波的传播要缓慢得多。根據相對論,這種物體不可能實際存在,但物體通常可以假定為完美剛體,前提是必須滿足運動速度遠小於光速的條件。 在经典力学裡,刚体通常被視為连续质量分佈体;在量子力学裏,刚体被視為一群粒子的聚集。例如,分子(由假定為質點的电子与核子组成)时常會被视为刚体。.
查看 旋轉群和刚体
單位元
單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .
查看 旋轉群和單位元
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
查看 旋轉群和几何学
內積
#重定向 点积.
查看 旋轉群和內積
立方體
立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.
查看 旋轉群和立方體
純量
#重定向 标量.
查看 旋轉群和純量
线性子空间
线性子空间(或向量子空间)在线性代数和相关的数学领域中是重要的。在没有混淆于其他子空间的时候通常简称为“子空间”。.
查看 旋轉群和线性子空间
线性映射
在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.
查看 旋轉群和线性映射
经典力学
经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.
查看 旋轉群和经典力学
结合律
在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.
查看 旋轉群和结合律
群
在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.
查看 旋轉群和群
角度
#重定向 度 (角).
查看 旋轉群和角度
长度
长度是一维空间的度量,是国际单位制的七种基础度量之一。.
查看 旋轉群和长度
逆元素
數學中,逆元素(Inverse element)推廣了加法中的加法逆元和乘法中的倒數。直觀地說,它是一個可以取消另一給定元素運算的元素。.
查看 旋轉群和逆元素
李群
數學中,李群(Lie group,)是具有群结构的光滑微分流形,其群作用與微分结构相容。李群的名字源於索菲斯·李的姓氏,以其為連續變換群奠定基礎。1893年,法文名詞groupes de Lie首次出現在李的學生Arthur Tresse的論文第三頁中。.
查看 旋轉群和李群
欧几里得空间
欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.
查看 旋轉群和欧几里得空间
歐拉旋轉定理
在運動學裏,歐拉旋轉定理(Euler's rotation theorem)表明,在三維空間裏,假設一個剛體在做一個位移的時候,剛體內部至少有一點固定不動,則此位移等價於一個繞著包含那固定點的固定軸的旋轉。這定理是以瑞士數學家萊昂哈德·歐拉命名。於1775年,歐拉使用簡單的幾何論述證明了這定理。 用數學術語,在三維空間內,任何共原點的兩個座標系之間的關係,是一個繞著包含原點的固定軸的旋轉。這也意味著,兩個旋轉矩陣的乘積還是旋轉矩陣。一個不是單位矩陣的旋轉矩陣必有一個實值的本徵值,而這本徵值是 1 。 對應於這本徵值的本徵向量就是旋轉所環繞的固定軸。.
查看 旋轉群和歐拉旋轉定理
正十二面體
正十二面體是由12個正五邊形所組成的正多面體,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号所表示,与正二十面体互成对偶。它是一种只具有的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有的卡塔兰多面体菱形十二面体,它(加上所有其它的五角十二面体)都与正十二面体在拓扑上等价。正十二面體还是截顶五方偏方面體的特例。其四維類比為正一百二十胞體。.
查看 旋轉群和正十二面體
正交群
数学上,数域F上的n阶正交群,记作O(n,F),是F上的n×n 正交矩阵在矩阵乘法下构成的群。它是一般线性群GL(n,F)的子群,由 这里QT是Q的转置。实数域上的经典正交群通常就记为O(n)。 更一般地,F上一个非奇异二次型的正交群是保持二次型不变的矩阵构成的群。嘉当-迪奥多内定理描述了这个正交群的结构。 每个正交矩阵的行列式为1或−1。行列式为1的n×n正交矩阵组成一个O(n,F)的正规子群,称为特殊正交群SO(n,F)。如果F的特征为2,那么1.
查看 旋轉群和正交群
流形
流形(Manifolds),是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。 一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 (0,1) 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。.
查看 旋轉群和流形
旋转
旋转在几何和线性代数中是描述刚体围绕一个固定点的运动的在平面或空间中的变换。旋转不同于没有固定点的平移,和翻转变换的形体的反射。旋转和上面提及的变换是等距的,它们保留在任何两点之间的距离在变换之后不变。.
查看 旋轉群和旋转
亦称为 SO(3)。