我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

推出 (范畴论)

指数 推出 (范畴论)

在范畴论中,一个数学领域, 推出(也称为纤维餘积、纤维和、共合和或餘笛卡尔方块)是由具有公共定义域的两个态射 f: Z → X 与 g: Z → Y 组成的图表的餘极限。 推出是拉回的范畴对偶。.

目录

  1. 23 关系: 基本群塞弗特-范坎彭定理子空間定义域不交并并集交集交换图表包含映射函子商群矩陣加法覆疊空間黏着空间范畴论阿贝尔群集合楔和泛性质数学拉回 (范畴论)态射

  2. 范畴中的极限

基本群

在代數拓撲中,基本群(或稱龐加萊群)是一個重要的同倫不變量。帶點拓撲空間的基本群是所有從該點出發的環路的同倫等價類,群運算由環路的銜接給出。 基本群能用以研究兩個空間是否同胚,也能分類一個連通空間的覆疊空間(至多差一個同構)。 基本群的推廣之一是同倫群。.

查看 推出 (范畴论)和基本群

塞弗特-范坎彭定理

代數拓撲中的塞弗特-范坎彭(Seifert–van Kampen)定理,將一個拓撲空間的基本群,用覆蓋這空間的兩個開且路徑連通的子空間的基本群來表示。.

查看 推出 (范畴论)和塞弗特-范坎彭定理

子空間

子空間有多個意義,出現在不同領域。.

查看 推出 (范畴论)和子空間

定义域

定义域(Domain),是函数自变量所有可取值的集合。给定函数f:A\rightarrow B,其中A被称为是f的定义域,记作D_。f映射到陪域中的所有值的集合称为f的值域,记作f(A)或R_。 例如,函数f(x).

查看 推出 (范畴论)和定义域

不交并

在集合論,一組集合的不交并指的是一種修改過的并集運算,除了普通的并集,還標記了元素的來源。不交并還有另一個意義,指的是兩兩不交的集合的并集。.

查看 推出 (范畴论)和不交并

并集

在集合论和数学的其他分支中,一组集合的并集(台湾叫做聯--集、港澳叫做--、大陆叫做--)是这些集合的所有元素构成的集合,而不包含其他元素。.

查看 推出 (范畴论)和并集

交集

数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.

查看 推出 (范畴论)和交集

交换图表

在数学领域,尤其是范畴论中,通常使用以对象为顶点、态射为边的交换图表来直观的表达一些性质,尤其是泛性质。 在图表中,复合连接任意两个对象的不同路径上的态射,所得的结果均相等,则称此图表可交换。同时,按照惯例,实线通常表示任意给定的态射,虚线则表示存在或唯一存在的态射。.

查看 推出 (范畴论)和交换图表

包含映射

在數學裡,若A為B的子集,則其包含映射為一函數,其將A的每一元素映射至B內的同一元素: 「有鉤箭頭」\hookrightarrow 有時被用來標記一內含映射。 此一及其他類似的由子結構映射的單射函數有時會被稱為自然單射。 給定任一於對象X和Y之間的態射,若存在一映射至其定義域的內含映射i:A→X,則可形成一f的限制/fi:A→Y。在許多的例子內,亦可以建立一映射至陪域的內含映射R→Y,其中R為f值域的子集。.

查看 推出 (范畴论)和包含映射

函子

在範疇論中,函子是範疇間的一類映射。函子也可以解釋為小範疇範疇內的態射。 函子首先現身於代數拓撲學,其中拓撲空間的連續映射給出相應的代數对象(如基本群、同調群或上同調群)的代數同態。在當代數學中,函子被用來描述各種範疇間的關係。「函子」(英文:Functor)一詞借自哲學家魯道夫·卡爾納普的用語。卡爾納普使用「函子」這一詞和函數之間的相關來類比謂詞和性質之間的相關。對卡爾納普而言,不同於當代範疇論的用法,函子是個語言學的詞彙。對範疇論者來說,函子則是個特別類型的函數。.

查看 推出 (范畴论)和函子

商群

在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.

查看 推出 (范畴论)和商群

矩陣加法

在數學裡,矩陣加法一般是指兩個矩陣把其相對應元素加在一起的運算。但有另一運算也可以認為是一種矩陣的加法。.

查看 推出 (范畴论)和矩陣加法

覆疊空間

在拓撲學中,拓撲空間X的覆疊空間是一對資料(Y,p),其中Y是拓撲空間,p: Y \to X是連續的滿射,並存在X的一組開覆盖 使得對每個U \in \mathcal,存在一個離散拓撲空間F及同胚:\phi_U: U \times F \simeq p^(U),而且p \circ \phi_U: U \times F \to U是對第一個坐標的投影。 滿足上述性質的p: Y \to X稱為覆疊映射。當X連通時,F的基數是個常數,稱為覆疊的次數或重數。 空間X的覆疊構成一個範疇\mathbf_X,其對象形如p: Y \to X,從p: Y \to X到q: Z \to X態射是連續映射f: Y \to Z,且q \circ f.

查看 推出 (范畴论)和覆疊空間

黏着空间

在数学中,黏着空间(adjunction space)是拓扑学中一个常见构造,它将一个拓扑空间贴或“黏合”到另一个。 具体地,设 X 与 Y 是一个拓扑空间以及 Y 的一个子空间A。设 f: A → X 是一个连续映射(称为贴映射,attaching map)。黏着空间 X ∪f Y 之构造如下:先取 X 与 Y 的不交并然后对所有属于 A的 x ,将 x 与 f(x) 等化。用数学符号表示为: 有时黏着空间也写成 X+\!_f \,Y。在直觉上,我们认为 Y 通过映射 f 黏合到 X。 作为一个集合,X ∪f Y 由 X 与 (Y − A) 的不交并组成;但其拓扑由商构造确定。当 A 是 Y 的一个闭子集时,可以证明映射 X → X ∪f Y 时一个闭嵌入且 (Y − A) → X ∪f Y 是一个开嵌入。.

查看 推出 (范畴论)和黏着空间

范畴论

疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.

查看 推出 (范畴论)和范畴论

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

查看 推出 (范畴论)和阿贝尔群

集合

集合可以指:.

查看 推出 (范畴论)和集合

楔和

在數學的拓撲學中,楔和是一族拓撲空間的「一點併」。更明確而言,設X和Y是兩個帶基點的空間(即有基點x0和y0的拓撲空間),則X和Y的楔和是在其不交併中黏合兩個基點x0 ∼ y0而得的商空間: 兩個帶基點的空間的楔和也是一個帶基點的空間。楔和是可結合及可交換的二元運算(不別同胚之異)。 同樣地可以定義一族帶基點的空間的楔和:設(X_i)_是一族帶基點(p_i)_的空間,則其楔和為 其中 ~ 是等價關係\。換言之,一族空間的楔和是將這些空間在一點處合併。空間的楔和依賴於所取的基點,除非這些空間都是齊性的。(即對空間中任何兩點,都有一個自同胚將第一點映射到第二點。).

查看 推出 (范畴论)和楔和

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

查看 推出 (范畴论)和模

泛性质

在数学的很多分支,经常用“在给定某些条件下存在唯一态射”这种形式的性质来定义一些构造。这种性质统称为泛性质(Universal property),有时也称为万有性。范畴论研究泛性质。 了解泛性质最好先研究一些例子。如:群积、直和、自由群、积拓扑、斯通-切赫紧致、张量积、反极限、直极限、核与上核、拉回、推出、等子等。.

查看 推出 (范畴论)和泛性质

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

查看 推出 (范畴论)和数学

拉回 (范畴论)

在范畴论中,一个数学分支,拉回(也称为纤维积或笛卡尔方块)是由具有公共上域的两个态射f: X → Z与g: Y → Z组成的图表的极限。拉回经常写作.

查看 推出 (范畴论)和拉回 (范畴论)

态射

数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.

查看 推出 (范畴论)和态射

另见

范畴中的极限

亦称为 纤维上积,纤维和。