之间交换图表和推出 (范畴论)相似
交换图表和推出 (范畴论)有(在联盟百科)4共同点: 范畴论,泛性质,数学,态射。
范畴论
疇論是數學的一門學科,以抽象的方法來處理數學概念,將這些概念形式化成一組組的「物件」及「態射」。數學中許多重要的領域可以形式化成範疇,並且使用範疇論,令在這些領域中許多難理解、難捉摸的數學結論可以比沒有使用範疇還會更容易敘述及證明。 範疇最容易理解的一個例子為集合範疇,其物件為集合,態射為集合間的函數。但需注意,範疇的物件不一定要是集合,態射也不一定要是函數;一個數學概念若可以找到一種方法,以符合物件及態射的定義,則可形成一個有效的範疇,且所有在範疇論中導出的結論都可應用在這個數學概念之上。 範疇最簡單的例子之一為广群,其態射皆為可逆的。群胚的概念在拓撲學中很重要。範疇現在在大部分的數學分支中都有出現,在理論電腦科學的某些領域中用于對應資料型別,而在數學物理中被用來描述向量空間。 範疇論不只是對研究範疇論的人有意義,對其他數學家而言也有著其他的意思。一個可追溯至1940年代的述語「一般化的抽象廢話」,即被用來指範疇論那相對於其他傳統的數學分支更高階的抽象化。.
交换图表和范畴论 · 推出 (范畴论)和范畴论 ·
泛性质
在数学的很多分支,经常用“在给定某些条件下存在唯一态射”这种形式的性质来定义一些构造。这种性质统称为泛性质(Universal property),有时也称为万有性。范畴论研究泛性质。 了解泛性质最好先研究一些例子。如:群积、直和、自由群、积拓扑、斯通-切赫紧致、张量积、反极限、直极限、核与上核、拉回、推出、等子等。.
交换图表和泛性质 · 推出 (范畴论)和泛性质 ·
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
交换图表和数学 · 推出 (范畴论)和数学 ·
态射
数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.
交换图表和态射 · 态射和推出 (范畴论) ·
上面的列表回答下列问题
- 什么交换图表和推出 (范畴论)的共同点。
- 什么是交换图表和推出 (范畴论)之间的相似性
交换图表和推出 (范畴论)之间的比较
交换图表有6个关系,而推出 (范畴论)有23个。由于它们的共同之处4,杰卡德指数为13.79% = 4 / (6 + 23)。
参考
本文介绍交换图表和推出 (范畴论)之间的关系。要访问该信息提取每篇文章,请访问: