目录
可解群
在數學的歷史中,群論原本起源於對五次方程及更高次方程無一般的公式解之證明的找尋,最終随着伽羅瓦理论的提出而确立。可解群的概念產生於描述其根可以只用根式(平方根、立方根等等及其和與積)表示的多項式所对应的自同構群所擁有的性質。 一個群被稱為可解的,若它擁有一個其商群皆為阿貝爾群的正規列。或者等價地說,若其降正規列 之中,每一個子群都會是前一個的导群,且最後一個為G的當然子群。上述兩個定義是等價的,对一個群H及H的正規子群N,其商群H/N為可交換的若且唯若N包含著H(1)。 對於有限群,有一個等價的定義為:一可解群為一有著其商群皆為質數階的循環群之合成列的群。此一定義會等價是因為每一個簡單阿貝爾群都是有質數階的循環群。若爾當-赫爾德定理表示若一個合成列有此性質,則其循環群即會對應到某個體上的n個根。但此一定義的等價性並不必然於無限群中亦會成立:例如,因為每一個在加法下的整數群Z的非當然子群皆同構於Z本身,它不會有合成列,但是其有著唯一同構於Z的商群之正規列,證明了其確實是可解的。 和喬治·波里亞的格言「若有一個你無法算出的問題,則會有的你可以算出的較簡單的問題」相一致的,可解群通常在簡化有關一複雜的群的推測至一系列有著簡單結構-阿貝爾群的群的推測有著很有用的功用。.
查看 换位子群和可解群
同调
数学上(特别是代数拓扑和抽象代数),同调 (homology,在希腊语中homos.
查看 换位子群和同调
同态
抽象代数中,同态是两个代数结构(例如群、环、或者向量空间)之间的保持结构不变的映射。英文的同态(homomorphism)来自希腊语:ὁμός (homos)表示"相同"而μορφή (morphe)表示"形态"。注意相似的词根ὅμοιος (homoios)表示"相似"出现在另一个数学概念同胚的英文(homeomorphism)中。.
查看 换位子群和同态
子群
假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.
查看 换位子群和子群
对称群 (n次对称群)
数学上,集合X上的对称群记作SX或Sym(X)。它的元素是所有X到X自身的双射组成的群。由于恒等函数是双射,双射的反函数也是双射,并且两个双射的复合仍是双射,这个集合关于函数的复合成为群,即是置换群Sym(X)。两个函数的复合一般记作f o g,在置换群的表示里简记作fg。 对称群在很多不同的数学领域中,都扮演了重要角色。包括:伽罗华理论、不变量理论、李群的表示理论和组合学等等。.
商群
在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.
查看 换位子群和商群
克莱因四元群
数学上,克莱因(Klein)四元群,得名自菲利克斯·克莱因,是最小的非循环群。它有4个元素,除单位元外其阶均为2。 克莱因四元群通常以V表示(来自德文的四元群Vierergruppe)。它是阿贝尔群,同构于\mathbb Z/2\mathbb Z\times \mathbb Z/2\mathbb Z,就是2阶的循环群与自身的直积。它也同构于4阶的二面体群。.
查看 换位子群和克莱因四元群
四元群
在群論裡,四元群是指一個8目的不可換群。它常被標示為Q,且被寫成乘法的形式,以下列的8個元素 這裡,1是單位元素,(−1)2.
查看 换位子群和四元群
群
在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.
查看 换位子群和群
當然群
在數學裡,當然群是指一個只包含單一元素e的群,其群運算只有e + e.
查看 换位子群和當然群
阿贝尔群
阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.
查看 换位子群和阿贝尔群
抽象代数
抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.
查看 换位子群和抽象代数
正规子群
在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。 埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。.
查看 换位子群和正规子群
另见
子群性質
- Malnormal子群
- 子群
- 换位子群
- 正规子群
亦称为 导群,换位子子群。