徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

復合 (宇宙學)

指数 復合 (宇宙學)

復合(Recombination)是宇宙論中帶電的電子和質子在宇宙中首度結合成電中性氫原子的時代請注意:再結合是不當的用詞,這是描述第一次電中性氫的形成。在大爆炸之後,宇宙是熱的,光子、電子和質子密集電漿,電漿和光子的交互作用造成的宇宙輻射,有效的使宇宙變得不透明。當宇宙膨脹時,它開始變冷。最終,宇宙的溫度冷到高能態中性氫可以形成的溫度點,自由電子和質子與中性氫原子的比率下降至約為1比10,000。不久之後,在宇宙中的光子與物質退耦,因此復合有時也被稱為光子退耦,儘管復合與光子退耦是不同的事件。一旦光子與物質退耦,它們在宇宙中不與物質交互作用的自由路徑,就構成我們今天所觀測到的宇宙微波背景輻射。復合大約發生在宇宙年齡380,000歲,或是大約紅移.

28 关系: Addison-Wesley劍橋大學出版社原子大爆炸宇宙学宇宙微波背景輻射哈伯體積光子光速等离子体紅移維因近似电子熱力學平衡物理评论質子自由流電子伏特電荷束縛能氫原子汤姆孙散射波茲曼常數数量级曆元普朗克常数

Addison-Wesley

#重定向 艾迪生韦斯利.

新!!: 復合 (宇宙學)和Addison-Wesley · 查看更多 »

劍橋大學出版社

劍橋大學出版社(Cambridge University Press)隸屬於英國劍橋大學,成立於1534年,是世界上僅次於牛津大學出版社的第二大大學出版社。.

新!!: 復合 (宇宙學)和劍橋大學出版社 · 查看更多 »

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 復合 (宇宙學)和原子 · 查看更多 »

大爆炸

--又稱大--靂(Big Bang),是描述宇宙的源起與演化的宇宙學模型,这一模型得到了当今科学研究和觀測最廣泛且最精確的支持。宇宙学家通常所指的大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的。根据2015年普朗克卫星所得到的最佳观测结果,宇宙大爆炸距今137.99 ± 0.21亿年,并经过不断的到达今天的状态。 大爆炸这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如宇宙學原理假设空间的和各向同性)。1922年,苏联物理学家亚历山大·弗里德曼用广义相对论描述了流体,从而给出了这一模型的场方程。1929年,美国物理学家埃德温·哈勃通过观测发现,从地球到达遥远星系的距离正比于这些星系的红移,从而推导出宇宙膨胀的观点。1927年时勒梅特通过求解弗里德曼方程已经在理论上提出了同样的观点,这个解后来被称作弗里德曼-勒梅特-罗伯逊-沃尔克度规。哈勃的观测表明,所有遥远的星系和星系团在视線速度上都在远离我们这一观察点,并且距离越远退行视速度越大 。如果当前星系和星团间彼此的距离在不断增大,则说明它们在过去曾经距离很近。从这一观点物理学家进一步推测:在过去宇宙曾经处于一个密度极高且温度极高的状态,大型粒子加速器在类似条件下所进行的实验结果则有力地支持了这一理论。然而,由于当前技术原因,粒子加速器所能达到的高能范围还十分有限,因而到目前为止,还没有证据能够直接或间接描述膨胀初始的极短时间内的宇宙状态。从而,大爆炸理论还无法对宇宙的初始状态作出任何描述和解释,事实上它所能描述并解释的是宇宙在初始状态之后的演化图景。当前所观测到的宇宙中氢元素的丰度,和理论所预言的宇宙早期快速膨胀并冷却过程中,最初的几分钟内通过核反应所形成的这些元素的理论丰度值非常接近,定性并定量描述宇宙早期形成的氢元素丰度的理论被称作太初核合成。 大爆炸一词首先是由英国天文学家弗雷德·霍伊尔所采用的。霍伊尔是与大爆炸对立的宇宙学模型——穩態學說的倡导者,他在1949年3月BBC的一次广播节目中将勒梅特等人的理论称作“这个大爆炸的观点”。虽然有很多通俗轶事记录霍伊尔这样讲是出于讽刺,但霍伊尔本人明确否认了这一点,他声称这只是为了着重说明这两个模型的显著不同之处。霍伊尔后来为恒星核合成的研究做出了重要贡献,这是恒星内部通过核反应利用氢元素制造出某些重元素的途径。1964年发现的宇宙微波背景辐射是支持大爆炸确实发生的重要证据,特别是当测得其频谱从而绘制出它的黑体辐射曲线之后,大多数科学家都开始相信大爆炸理论了。.

新!!: 復合 (宇宙學)和大爆炸 · 查看更多 »

宇宙学

宇宙學(英文:Cosmology)或宇宙論,這個詞源自於希臘文的κοσμολογία(cosmologia, κόσμος (cosmos) order + λογια (logia) discourse)。宇宙學是對宇宙整體的研究,並且延伸探討至人類在宇宙中的地位。雖然宇宙學這個詞是最近才有的,人們對宇宙的研究已經有很長的一段歷史,牽涉到科學、哲學、神秘学以及宗教。.

新!!: 復合 (宇宙學)和宇宙学 · 查看更多 »

宇宙微波背景輻射

#重定向 宇宙微波背景.

新!!: 復合 (宇宙學)和宇宙微波背景輻射 · 查看更多 »

哈伯體積

哈伯體積或哈伯球(Hubble volume或Hubble sphere),是宇宙學中包圍觀測者的球區域,在哈伯球之外, 觀測者不能觀察到被退行速度超過光速之外的區域包圍的範圍。 哈伯球的同移半徑是c/H_0,此處的c是光速,H_0是哈伯常數。 更通俗的說,"哈伯體積"是可以是用於空間中體基的因次是(c/H_0)^3的任何區域。 哈伯體積經常 (但是錯誤的) 被視為可觀測宇宙的同義詞,但是後者其實是大於哈伯體積的For a discussion of why objects can be seen that are outside the Hubble sphere, see 。.

新!!: 復合 (宇宙學)和哈伯體積 · 查看更多 »

光子

| mean_lifetime.

新!!: 復合 (宇宙學)和光子 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 復合 (宇宙學)和光速 · 查看更多 »

等离子体

--(又稱--)是在固態、液態和氣態以外的第四大物質狀態,其特性與前三者截然不同。 氣體在高溫或強電磁場下,會變為等離子體。在這種狀態下,氣體中的原子會擁有比正常更多或更少的電子,從而形成陰離子或陽離子,即帶負電荷或正電荷的粒子。氣體中的任何共價鍵也會分離。 由於等離子體含有許多載流子,因此它能夠導電,對電磁場也有很強的反應。和氣體一樣,等離子體的形狀和體積並非固定,而是會根據容器而改變;但和氣體不一樣的是,在磁場的作用下,它會形成各種結構,例如絲狀物、圓柱狀物和雙層等。 等離子體是宇宙重子物質最常見的形態,其中大部分存在於稀薄的星系際空間(特別是星系團內介質)和恆星之中。.

新!!: 復合 (宇宙學)和等离子体 · 查看更多 »

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

新!!: 復合 (宇宙學)和紅移 · 查看更多 »

維因近似

#重定向 維恩近似.

新!!: 復合 (宇宙學)和維因近似 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 復合 (宇宙學)和电子 · 查看更多 »

熱力學平衡

热力学平衡,简称热平衡,指一个热力学系统在没有外界影响的条件下,系统各部分的宏观属性(如物质的量、能量、体积等)在长时间内不发生任何变化的状态。 熱平衡是熱力學中的一個基本實驗定律,其重要意義在於它是科學定義溫度概念的基礎,是用溫度計測量溫度的依據。 在熱力學中,溫度、內能、熵是三個基本的狀態函數:.

新!!: 復合 (宇宙學)和熱力學平衡 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 復合 (宇宙學)和熵 · 查看更多 »

物理评论

物理评论(Physical Review,简称Phys.),为美国的一个学术性期刊,创办于1893年。该杂志刊登物理学各方面的最新研究成果以及科学评论等文章。该杂志由美国物理学会出版发行。 物理评论分为ABCDE等分刊。.

新!!: 復合 (宇宙學)和物理评论 · 查看更多 »

質子

|magnetic_moment.

新!!: 復合 (宇宙學)和質子 · 查看更多 »

自由流

自由流粒子,在天文學,通常是光子,在通過媒介傳播不會散射。.

新!!: 復合 (宇宙學)和自由流 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

新!!: 復合 (宇宙學)和電子伏特 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 復合 (宇宙學)和電荷 · 查看更多 »

束縛能

#重定向 电离能.

新!!: 復合 (宇宙學)和束縛能 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 復合 (宇宙學)和氢 · 查看更多 »

氫原子

氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。.

新!!: 復合 (宇宙學)和氫原子 · 查看更多 »

汤姆孙散射

物理学中,汤姆孙散射是指电磁辐射和一个自由带电粒子产生的弹性散射。入射电磁波的电场使粒子加速,从而激发粒子产生和入射波频率相同的辐射(散射波)。汤姆孙散射是康普顿散射在低能量区的近似。汤姆孙散射是等离子物理学中的一个重要现象,它首先由英国物理学家约瑟夫·汤姆孙解释。 只要粒子的运动是非相对论性的(即速度远小于光速),粒子加速的主要原因都来自入射波的电场分量,而磁场的作用可被忽略。粒子将会在电场振动的方向上开始运动,从而产生电磁偶极辐射。运动粒子在垂直於运动方向上的辐射最强,而辐射沿着粒子的运动方向产生偏振。从而,取决于观察者的位置,从一个小体元散射出的电磁波存在程度不同的偏振。.

新!!: 復合 (宇宙學)和汤姆孙散射 · 查看更多 »

波茲曼常數

波茲曼常數(Boltzmann constant)是有關於溫度及能量的一個物理常數,常用 k 或 k_B 表示,以纪念奧地利物理學家路德維希·波茲曼在統計力學领域做出的重大貢獻。數值及單位為:(SI制,2014 CODATA 值) 括號內為誤差值,原則上玻尔兹曼常數為導出的物理常數,其值由其他物理常數及絕對溫度單位的定義所決定。 氣體常數 R 是波茲曼常數 k 乘上阿伏伽德罗常數 N_A: k.

新!!: 復合 (宇宙學)和波茲曼常數 · 查看更多 »

数量级

數量級是指數量的尺度或大小的级别,每个级别之间保持固定的比例。通常采用的比例有 10,2,1000,1024, ''e'' (欧拉数,大约等于 2.71828182846 的超越數,即自然對數的底)。 通常情况下,数量级指一系列 10 的冪(次方),即相邻两个数量级之间的比为 10。例如说两数相差三个数量级,其实就是说一个数比另一个大 1000 倍。本文主要描述十进制下的数量级,并采用科学记数法表示。.

新!!: 復合 (宇宙學)和数量级 · 查看更多 »

曆元

曆元,在天文學是一些天文變數作為參考的時刻點,例如天球座標或天體的橢圓軌道要素,因為這些會受到攝動而隨著時間變化。這些會隨著時間變動的天文變量可能包括天體的平黃經或平近點角、軌道相對於參考平面的交點、軌道近日點和遠日點或拱點的方向、其軌道半長軸的大小等等。 在中國古代曆法中,則為曆法起算的基準點。对天球坐标来说,其他时刻天体的位置可以依据岁差和天体的自行而计算出。在轨道根數的情况下,就必须考虑其他物体产生的扰动才能计算出另一时刻的轨道根数。 现在使用的标准曆元是J2000.0,即TT(Terrestrial Time)时间2000年1月1日12:00。前缀「J」代表这是一个儒略曆元(Julian epoch)。在使用J2000.0前的标准曆元是B1950.0,前缀「B」代表这是一个贝塞耳曆元(Besselian epoch)。 贝塞耳曆元在1984年前使用,而现在使用的是儒略曆元。 亨利·德雷伯星表使用B1900.0,B1900.0纪元在天文学上使用。因为恒星的赤经和赤纬会因岁差之缘故改变,天文学家经常定义某一纪元作为参考点。B1900.0纪元标准已经被后继标准所取代:B1950.0以及现在使用的J2000.0纪元标准。前缀"B"代表这是一个贝塞耳纪元而非一个儒略纪元。 对轨道参数的曆元经常会同时给出TT时间,有如下几种格式:.

新!!: 復合 (宇宙學)和曆元 · 查看更多 »

普朗克常数

普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.

新!!: 復合 (宇宙學)和普朗克常数 · 查看更多 »

重定向到这里:

复合 (宇宙学)

传出传入
嘿!我们在Facebook上吧! »