徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

波茲曼常數

指数 波茲曼常數

波茲曼常數(Boltzmann constant)是有關於溫度及能量的一個物理常數,常用 k 或 k_B 表示,以纪念奧地利物理學家路德維希·波茲曼在統計力學领域做出的重大貢獻。數值及單位為:(SI制,2014 CODATA 值) 括號內為誤差值,原則上玻尔兹曼常數為導出的物理常數,其值由其他物理常數及絕對溫度單位的定義所決定。 氣體常數 R 是波茲曼常數 k 乘上阿伏伽德罗常數 N_A: k.

31 关系: 原子原子量半导体奥地利平方平均数二極體库仑开尔文國際度量衡委員會国际单位制理想氣體理想氣體狀態方程统计力学热力学爾格絕對溫度焦耳熱容量物理常數路德维希·玻尔兹曼能量自然對數電壓電子伏特電荷氣體常數温度摩尔 (单位)

原子

原子是元素能保持其化學性質的最小單位。一個正原子包含有一個緻密的原子核及若干圍繞在原子核周圍帶負電的電子。而負原子的原子核帶負電,周圍的負電子帶「正電」。正原子的原子核由帶正電的質子和電中性的中子組成。負原子原子核中的反質子帶負電,從而使負原子的原子核帶負電。當質子數與電子數相同時,這個原子就是電中性的;否則,就是帶有正電荷或者負電荷的離子。根據質子和中子數量的不同,原子的類型也不同:質子數決定了該原子屬於哪一種元素,而中子數則確定了該原子是此元素的哪一個同位素。 原子的英文名(Atom)是從希臘語ἄτομος(atomos,“不可切分的”)轉化而來。很早以前,希臘和印度的哲學家就提出了原子的不可切分的概念。 17和18世紀時,化學家發現了物理學的根據:對於某些物質,不能通過化學手段將其繼續的分解。 19世紀晚期和20世紀早期,物理學家發現了亞原子粒子以及原子的內部結構,由此證明原子並不是不能進一步切分。 量子力學原理能夠為原子提供很好的模型。 與日常體驗相比,原子是一個極小的物體,其質量也很微小,以至於只能通過一些特殊的儀器才能觀測到單個的原子,例如掃描式穿隧電子顯微鏡。原子的99.9%的重量集中在原子核,其中的亞原子和中子有著相近的質量。每一種元素至少有一種不穩定的同位素,可以進行放射性衰變。這直接導致核轉化,即亞原子核中的中子數或質子數發生變化。 原子佔據一組穩定的能級,或者稱為軌道。當它們吸收和放出​​中子的時候,中子也可以在不同能級之間跳躍,此時吸收或放出原子的能量與能級之間的能量差相等。電子決定了一個元素的化學屬性,並且對中子的磁性有著很大的影響。.

新!!: 波茲曼常數和原子 · 查看更多 »

原子量

原子量(atomic mass),也称原子质量或相对原子质量,符号ma,是指單一原子的質量,其單位為原子质量单位(符號u或Da,以往曾用amu) ,定義為一个碳12原子靜止質量的。原子質量以質子和中子的質量為主,元素的原子量几近等于其質量數。 若將原子量除以原子质量单位,會得到一個無因次量,這個無因次量稱為「相對同位素質量」(relative isotopic mass)。因此碳12的原子量是12u或是12 Da,而一個碳12原子的相對同位素質量就是12。.

新!!: 波茲曼常數和原子量 · 查看更多 »

半导体

半导体(Semiconductor)是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导电带时,电子就可以在带间任意移动而导电。一般常见的金属材料其导电带与价电带之间的能隙非常小,在室温下电子很容易获得能量而跳跃至导电带而导电,而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导电带,所以无法导电。 一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 半导体通过电子传导或電洞傳导的方式传输电流。电子传导的方式与铜线中电流的流动类似,即在电场作用下高度电离的原子将多余的电子向着负离子化程度比较低的方向传递。電洞导电则是指在正离子化的材料中,原子核外由于电子缺失形成的“空穴”,在电场作用下,空穴被少数的电子补入而造成空穴移动所形成的电流(一般称为正电流)。 材料中载流子(carrier)的数量对半导体的导电特性极为重要。这可以通过在半导体中有选择的加入其他“杂质”(IIIA、VA族元素)来控制。如果我們在純矽中摻雜(doping)少許的砷或磷(最外層有5個電子),就會多出1個自由電子,這樣就形成N型半導體;如果我們在純矽中摻入少許的硼(最外層有3個電子),就反而少了1個電子,而形成一個電洞(hole),這樣就形成P型半導體(少了1個帶負電荷的原子,可視為多了1個正電荷)。.

新!!: 波茲曼常數和半导体 · 查看更多 »

奥地利

奥地利共和国()通稱奥地利(Österreich ),是一个位在於中歐的内陆国家,但在歷史上也被分類成西歐或者東歐的國家國。奧地利与多國接壤,东面是匈牙利和斯洛伐克,南面是意大利和斯洛文尼亚,西面是列支敦士登和瑞士,北面是德国和捷克。首都兼最大城市是維也納,人口超過170萬。國土面積,同時因阿爾卑斯山存在的緣故,奧地利成爲了一個山地國,只有32%的國土海拔低於,最高點海拔。 如今的奧地利是一個半總統制的代議民主國家,下含九個聯邦州。Lonnie Johnson 17奧地利是當今世界最富裕的國家之一,2012年的人均國民生產總值達到46,330美元。其人類發展指數在2014年排世界第21位。同時自1995年以來就是歐盟成員, 是OECD的創始國之一。1995年簽訂申根公約,1999年接受並于2002年起使用歐元。奧地利曾是統治中歐650年到1918年哈布斯堡王朝的核心部份,是神聖羅馬帝國和奧匈帝國的首都,並且奧地利在民族上屬於日耳曼民族的居住地,和德國、瑞士、盧森堡同為德語區,在歷史上和中歐東歐的的匈牙利、捷克、波蘭都有緊密的關聯。.

新!!: 波茲曼常數和奥地利 · 查看更多 »

平方平均数

平方平均数(Quadratic mean),簡稱方均根(Root Mean Square,縮寫為 RMS),是2次方的廣義平均數的表达式,也可叫做2次冪平均數。其計算公式是: 在連續函數\beginf(x)\end的區間\begin\end內,其均方根定義為: f_.

新!!: 波茲曼常數和平方平均数 · 查看更多 »

二極體

#重定向 二極管.

新!!: 波茲曼常數和二極體 · 查看更多 »

库仑

库仑(Coulomb)是电量的单位,符号为\mathrm。若导线中载有1安培的穩定電流,则在1秒内通过导线横截面积的电量为1库仑。 库仑不是國際單位制基本單位,而是國際單位制導出單位。1库仑.

新!!: 波茲曼常數和库仑 · 查看更多 »

开尔文

开尔文(Kelvin)是温度的计量单位。它是國際單位制(SI)的七个基本單位之一,符號为K。以开尔文计量的温度标准称为热力学温标,其零点为绝对零度。在热力学的经典表述中,绝对零度下所有热运动停止。1开尔文定义为水的三相点與绝对零度相差的。水的三相点是0.01°C,因此温度变化1攝氏度,相当于变化了1开尔文。 开氏温标得名自英國工程师和物理学家威廉·汤姆森,第一代开尔文男爵(1824–1907)。.

新!!: 波茲曼常數和开尔文 · 查看更多 »

國際度量衡委員會

国际计量委员会(Comité international des poids et mesures,简称CIPM)由18个由国际计量大会任命,来自《米制公约》会员国的委员组成,他们主要的职责是以直接行动或向国际计量大会提议的方式,确保计量单位在全球范围内的一致性。 该委员会每年都会在国际计量局召开大会。 该组织的秘书处位于法国塞夫尔。.

新!!: 波茲曼常數和國際度量衡委員會 · 查看更多 »

国际单位制

國際單位制(Système International d'Unités,簡稱SI),-->源於公制(又稱米制),是世界上最普遍採用的標準度量系統。國際單位制以七個基本單位為基礎,由此建立起一系列相互換算關係明確的「一致單位」。另有二十個基於十進制的詞頭,當加在單位名稱或符號前的時候,可用於表達該單位的倍數或分數。 國際單位制源於法國大革命期間所採用的十進制單位系統──公制;現行制度從1948年開始建立,於1960年正式公佈。它的基礎是米-千克-秒制(MKS),而非任何形式的厘米-克-秒制(CGS)。國際單位制的設計意圖是,先定義詞頭和單位名稱,但單位本身的定義則會隨著度量科技的進步、精準度的提高,根據國際協議來演變。例如,分別於2011年、2014年舉辦的第24、25屆國際度量衡大會討論了有關重新定義公斤的提案。 隨著科學的發展,厘米-克-秒制中出現了不少新的單位,而各學科之間在單位使用的問題上也沒有良好的協調。因此在1875年,多個國際組織協定《米制公約》,創立了國際度量衡大會,目的是訂下新度量衡系統的定義,並在國際上建立一套書寫和表達計量的標準。 國際單位制已受大部分發達國家所採納,但在英語國家當中,國際單位制並沒有受到全面的使用。.

新!!: 波茲曼常數和国际单位制 · 查看更多 »

理想氣體

想氣體為假想的气体。其假設為:.

新!!: 波茲曼常數和理想氣體 · 查看更多 »

理想氣體狀態方程

#重定向 理想气体状态方程.

新!!: 波茲曼常數和理想氣體狀態方程 · 查看更多 »

统计力学

统计力学(Statistical mechanics)是一個以波茲曼等人提出以最大熵度理論為基礎,藉由配分函數 將有大量組成成分(通常為分子)系統中微觀物理狀態(例如:動能、位能)與宏觀物理量統計規律 (例如:壓力、體積、溫度、熱力學函數、狀態方程式等)連結起來的科学。如氣體分子系統中的壓力、體積、溫度。易辛模型中磁性物質系統的總磁矩、相變溫度、和相變指數。 通常可分為平衡態統計力學,與非平衡態統計力學。其中以平衡態統計力學的成果較為完整,而非平衡態統計力學至今也在發展中。統計物理其中有許多理論影響著其他的學門,如資訊理論中的資訊熵。化學中的化學反應、耗散結構。和發展中的經濟物理學這些學門當中都可看出統計力學研究線性與非線性等複雜系統中的成果。.

新!!: 波茲曼常數和统计力学 · 查看更多 »

热力学

热力学,全稱熱動力學(thermodynamique,Thermodynamik,thermodynamics,源於古希腊语θερμός及δύναμις)是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与準平衡态的物理、化学过程。热力学定義許多巨觀的物理量(像溫度、內能、熵、壓強等),描述各物理量之間的關係。热力学描述數量非常多的微觀粒子的平均行為,其定律可以用統計力學推導而得。 熱力學可以總結為四條定律。 熱力學第零定律定義了温度這一物理量,指出了相互接觸的两个系統,熱流的方向。 熱力學第一定律指出内能這一物理量的存在,並且與系統整體運動的動能和系統与與環境相互作用的位能是不同的,區分出熱與功的轉換。 熱力學第二定律涉及的物理量是温度和熵。熵是研究不可逆过程引入的物理量,表征系統通過熱力學過程向外界最多可以做多少熱力學功。 熱力學第三定律認為,不可能透過有限過程使系統冷却到絕對零度。 熱力學可以應用在許多科學及工程的領域中,例如:引擎、相變化、化學反應、輸運現象甚至是黑洞。熱力學計算的結果不但對物理的其他領域很重要,對航空工程、航海工程、車輛工程、機械工程、細胞生物學、生物醫學工程、化學、化學工程及材料科學等科學技術領域也很重要,甚至也可以應用在經濟學中。 热力学是从18世纪末期发展起来的理论,主要是研究功與热量之間的能量轉換;在此功定義為力與位移的內積;而熱則定義為在熱力系統邊界中,由溫度之差所造成的能量傳遞。兩者都不是存在於熱力系統內的性質,而是在熱力過程中所產生的。 熱力學的研究一開始是為了提昇蒸汽引擎的效率,早期尼古拉·卡諾有許多的貢獻,他認為若引擎效率提昇,法國有可能贏得拿破崙戰爭。出生於愛爾蘭的英國科學家開爾文在1854年首次提出了熱力學明確的定義: 一開始熱力學研究關注在熱機中工質(如蒸氣)的熱力學性質,後來延伸到化学过程中的能量轉移,例如在1840年科學家杰迈因·亨利·盖斯提出,有關化學反應的能量轉移的研究。化學熱力學中研究熵對化學反應的影響Gibbs, Willard, J. (1876).

新!!: 波茲曼常數和热力学 · 查看更多 »

爾格

格(英文:Erg)是熱量和做功的單位。定义为1达因的力使物体在力的方向上移动一厘米所作的功。 1尔格.

新!!: 波茲曼常數和爾格 · 查看更多 »

絕對溫度

#重定向 热力学温标.

新!!: 波茲曼常數和絕對溫度 · 查看更多 »

焦耳

耳(簡稱焦)是國際單位制中能量、功或热量的導出單位,符号為J。在古典力學裏,1焦耳等於施加1牛頓作用力經過1公尺距離所需的能量(或做的機械功)。在電磁學裏,1焦耳等於將1安培電流通過1歐姆電阻1秒時間所需的能量。焦耳是因紀念物理學家詹姆斯·焦耳而命名。 以其它單位表示, 1焦耳也可以定義.

新!!: 波茲曼常數和焦耳 · 查看更多 »

熱容量

热容量(heat capacity)是用以衡量物质所包含的热量的物理量,用符号C 表示,单位是J·K-1或J·℃-1。 热容量的定义是一定量的物质在一定条件下温度升高1度所需要的热,其公式为: C.

新!!: 波茲曼常數和熱容量 · 查看更多 »

化學及热力学中所谓熵(entropy),是一種測量在動力學方面不能做功的能量總數,也就是當總體的熵增加,其做功能力也下降,熵的量度正是能量退化的指標。熵亦被用於計算一個系統中的失序現象,也就是計算該系統混亂的程度。熵是一个描述系统状态的函数,但是经常用熵的参考值和变化量进行分析比较,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。.

新!!: 波茲曼常數和熵 · 查看更多 »

物理常數

物理常數,或称物理定數、物理常量或自然常数,指的是物理学中数值固定不变的物理量。它與数学常数不同,數學常數指的是一个在數值上固定不變的值,但是這個值不一定與物理測量有關。 物理常数有很多,其中比较著名的有真空光速、普朗克常数、万有引力常数、玻尔兹曼常數及阿伏伽德罗常数。它们被假设在宇宙中任何地方和任何时刻都相同。物理常数的物理意义有很多表述形式,普朗克长度表征基本物理长度,真空光速是宇宙中最大的速度,精细结构常数则表征了电子和光子之间的相互作用,是一个无量纲量。 从1937年开始,狄拉克等物理学家开始意识到物理常数有可能随着宇宙年龄的增长而发生变化,但时至今日还没有明确的实验证据能够证明狄拉克提出的这种可能性。但科学家们已经探测到了一些物理量可能每年都依极小的量发生变化,并划定了这种变化幅度可能的上限(万有引力常数变化的量大约是一年10-11;精细结构常数变化的量大约是一年10-5)。 以下是部分物理常數的列表:.

新!!: 波茲曼常數和物理常數 · 查看更多 »

路德维希·玻尔兹曼

路德维希·爱德华·玻尔兹曼(Ludwig Eduard Boltzmann ,)是一位奥地利物理学家和哲学家。作为一名物理学家,他最伟大的功绩是发展了通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,热传导,扩散等等)的统计力学,并且从统计概念出發,完美地阐释了热力学第二定律。.

新!!: 波茲曼常數和路德维希·玻尔兹曼 · 查看更多 »

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

新!!: 波茲曼常數和能量 · 查看更多 »

自然對數

自然对数(Natural logarithm)是以e為底數的对数函数,標記作ln(x)或loge(x),其反函数是指數函數ex。.

新!!: 波茲曼常數和自然對數 · 查看更多 »

電壓

電壓(Voltage,electric tension或 electric pressure),也稱作電位差(electrical potential difference),是衡量单位电荷在静电场中由于電勢不同所產生的能量差的物理量。此概念與水位高低所造成的「水壓」相似。需要指出的是,“电压”一词一般只用于电路当中,“電動勢”和“电位差”则普遍应用于一切电现象当中。 電壓的國際單位是伏特(V)。1伏特等於對每1庫侖的電荷做了1焦耳的功,即U(V).

新!!: 波茲曼常數和電壓 · 查看更多 »

電子伏特

電子伏特(electron Volt),簡稱電子伏,符号为eV,是能量的單位。代表一個電子(所帶電量為1.6×10-19庫侖)经过1伏特的電位差加速后所獲得的动能。電子伏与SI制的能量单位焦耳(J)的换算关系是.

新!!: 波茲曼常數和電子伏特 · 查看更多 »

電荷

在電磁學裡,電荷(electric charge)是物質的一種物理性質。稱帶有電荷的物質為「帶電物質」。兩個帶電物質之間會互相施加作用力於對方,也會感受到對方施加的作用力,所涉及的作用力遵守庫侖定律。电荷分为两种,「正电荷」与「负电荷」。带有正电荷的物质称为「带正电」;带有负电荷的物质称为「带负电」。假若两个物质都带有正电或都带有负电,则称这两个物质「同电性」,否则称这两个物质「异电性」。两个同电性物质会相互感受到对方施加的排斥力;两个异电性物质会相互感受到对方施加的吸引力。 电荷是许多次原子粒子所拥有的一种基本守恒性质。称带有电荷的粒子为「带电粒子」。电荷决定了带电粒子在电磁方面的物理行为。静止的带电粒子会产生电场,移动中的带电粒子会产生电磁场,带电粒子也会被电磁场所影响。一个带电粒子与电磁场之间的相互作用称为电磁力或电磁交互作用。这是四种基本交互作用中的一种。.

新!!: 波茲曼常數和電荷 · 查看更多 »

氣體常數

氣體常數(又稱理想氣體常數、普适氣體常數,符號為R)是一個在物態方程式中連繫各個熱力學函數的物理常數。.

新!!: 波茲曼常數和氣體常數 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 波茲曼常數和氦 · 查看更多 »

氙(注音:ㄒㄧㄢ,漢語拼音:xiān;舊譯作氠、氥、𣱧)是一種化學元素,化學符號為Xe,原子序為54。氙是一種無色、無味的稀有氣體。地球大氣層中含有痕量的氙。 雖然氙的化學活性很低,但是它仍然能夠進行化學反應,例如形成六氟合鉑酸氙──首個被合成的稀有氣體化合物。 自然產生的氙由8種穩定同位素組成。氙還有40多種能夠進行放射性衰變的不穩定同位素。氙同位素的相對比例對研究太陽系早期歷史有重要的作用。具放射性的氙-135是核反應爐中最重要的中子吸收劑,可通過碘-135的核衰变產生。 氙可用在閃光燈和弧燈中,或作全身麻醉藥。最早的准分子激光設計以氙的二聚體分子(Xe2)作為激光介質,而早期激光設計亦用氙閃光燈作激光抽運。氙還可以用來尋找大質量弱相互作用粒子,或作航天器離子推力器的推進劑。.

新!!: 波茲曼常數和氙 · 查看更多 »

温度

温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。溫度理論上的高極點是「普朗克溫度」,而理論上的低極點則是「絕對零度」。「普朗克溫度」和「絕對零度」都是無法通过有限步骤達到的。目前国际上用得较多的温标有摄氏温标(°C)、华氏温标(°F) 、热力学温标(K)和国际实用温标。 温度是物体内分子间平均动能的一种表现形式。值得注意的是,少數幾個分子甚至是一個分子構成的系統,由於缺乏統計的數量要求,是沒有溫度的意義的。 溫度出現在各種自然科學的領域中,包括物理、地質學、化學、大氣科學及生物學等。像在物理中,二物體的熱平衡是由其溫度而決定,溫度也會造成固體的熱漲冷縮,溫度也是熱力學的重要參數之一。在地質學中,岩漿冷卻後形成的火成岩是岩石的三種來源之一,在化學中,溫度會影響反應速率及化學平衡。大气层中气体的温度是气温(Atmospheric temperature),是氣象學常用名词。它直接受日射所影響:日射越多,氣温越高。 溫度也會影響生物體內許多的反應,恒温动物會調節自身體溫,若體溫升高即為發熱,是一種醫學症狀。生物體也會感覺溫度的冷熱,但感受到的溫度受風寒效應影響,因此也會和周圍風速有關。.

新!!: 波茲曼常數和温度 · 查看更多 »

摩尔 (单位)

莫耳(拉丁文「一團」),是物质的量的国际单位,符号为mol(mole)。1莫耳是指化学物质所含基本微粒个数等于12克的碳-12(_6^\!\mbox)所含原子个数,即阿伏伽德罗常数。使用莫耳时,应指明基本微粒,可以是分子、原子、离子、电子或其他基本微粒,也可以是基本微粒的特定组合体。1莫耳物质中所含基本微粒的个数等于阿伏伽德罗常数,符号为NA,数值约是6.02214129×1023,常取6.02×1023。摩尔是國際單位制的七個基本單位之一,在量綱分析中會用符號n表示。 摩尔可以用于表达原子、电子和离子等微观粒子的数量。在化学反应的定量计算中,常使用摩尔。例如氢气与氧气反应生成水,可以用化学方程式表达为:2+→2。其意义为2摩尔氢气与1摩尔氧气反应生成2摩尔水。溶液的浓度也常用物质的量浓度,即摩尔浓度表示,例如1mol/L的氯化钠溶液,表示每升该溶液中含有1摩尔氯化钠。 摩尔质量定义为一摩尔某物质的质量,以克计量时在数值上等于该物质的相对分子质量(或相对原子质量)。例如水分子的相对分子质量约为18.015,一摩尔水的质量为18.015克。 “克-分子”(gram-molecule)曾被用来表达本质上相同的概念,1克-分子的純物質表示其質量等於該物質數量為阿伏加德罗常数時的質量。而“克-原子”(gram-atom)则用来表示一个相关但不同的概念,1克-原子的元素表示其質量等於該原子的數量為阿伏加德罗常数時的質量。例如1摩尔是1“克-分子”,是由1“克-原子”及2“克-原子”組成。。 一些科学家以1摩尔物质所含微粒数——亞佛加厥数确定了一个纪念日——摩尔日。摩尔日纪念活动在每年的10月23日举行,也有一些纪念活动在6月2日举行。.

新!!: 波茲曼常數和摩尔 (单位) · 查看更多 »

重定向到这里:

波尔兹曼常数波尔茨曼常数玻尔兹曼常量玻爾茲曼常數玻茲曼常數玻耳兹曼常数玻耳茲曼常數热电压

传出传入
嘿!我们在Facebook上吧! »