我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

寄生阻力

指数 寄生阻力

寄生阻力(Parasitic drag)也稱附加阻力、雜散阻力或廢阻力,是指物體在流體中運動,由於流體黏度或壓強差所造成之阻力。寄生阻力主要可以分為形狀阻力(form drag)、表面摩擦力或摩擦阻力(Skin friction)及干擾阻力(interference drag)三種、其中形狀阻力及表面摩擦力之和也稱為型阻(profile drag)。 飛機在飛行時,除了寄生阻力外,也會由於翼面產生升力而出現誘導阻力,低速時由於飛機要維持升力,需要加大攻角,而誘導阻力也隨之提高。當速度提高時,誘導阻力下降,由於物體和流體之間的相對速度提高,寄生阻力也隨之提高。若速度已到達穿音速或超音速時,除了寄生阻力及誘導阻力外,還會產生。 其中速度提高時,誘導阻力下降,其他阻力卻隨之上昇,因此總阻力會在某一速度時出現最小值,若飛機以此速度航行,其效率會等於或接近其最佳效率。飛行員會以此速度來使滑翔距離最大化。不過若要使續航力最大化,飛機的速度需保持在需輸出功率最小的速度,此速度一般會比對應最小阻力的速度要小。在最小阻力點,CD,o(當升力為零時的阻力係數)會等於誘導阻力係數CD,i。但在輸出功率最小的速度,零升力阻力係數會是誘導阻力係數的三分之一。阻力可以用下式來表示: 其中 而.

目录

  1. 17 关系: 升力升阻比剪應力續航力飛行阻力誘導阻力超音速跨音速黏度阻力阻力方程邊界層邊界層分離流体流体力学流线型攻角

  2. 阻力

升力

升力(Lift),当流体流经一个物体的表面时会对其产生一个表面力,而则这个力的垂直于流体流向的分力,与之相对的则是方向平行于流体流向的阻力。如果流体是空气时,它产生的升力便叫做空气动力。航空器要想升到空中,必须能产生能克服自身重力的升力。 升力主要是靠機翼對空氣取得,飛機的機翼斷面形狀有很多種類,依照每種形狀適用於不同功用的飛機,飛機的機翼從斷面來看,通常機翼上半部曲面及下半部曲面不一樣,通常為上半部曲面弧長較長,空氣流經飛機機翼截面,因空氣流過機翼表面時被一分為二,經過機翼上表面的空氣是沿着曲线运动的(因为机翼上表面是弯曲的),所以会产生负压(负压提供空气沿曲线运动所需的向心力),而經過機翼下面的空氣是沿着比较平缓的表面运动的(机翼下表面相对平直),所以不会产生负压(参见康达效应),机翼下部压力高,上部压力小,壓力高的地方會往壓力低的部分移動,這就是升力的由來。.

查看 寄生阻力和升力

升阻比

在空气动力学中,升阻比(L/D)是指飞行器在同一迎角下升力与阻力的比值。飞行器的升阻比越大,其空气动力性能越好,对飞行越有利,也會有較佳爬升性能。升阻比的公式如下 其中L為升力,F_D為阻力。 一般飛機的阻力會和升力使用相同的參考面積,也就是其翼面積,因此升阻比可簡化為升力係數及阻力係數之間的比值 其中C_L及C_D分別是升力係數及阻力係數。 一般此數值是在一特定空速及迎角下的升力,除以相同條件下的阻力。升阻比隨速度而變,因此所得結果一般會是不同空速下升阻比的曲線。由於阻力在高速及低速時較大,因此升阻比相對速度的圖形一般會呈現倒U字形。.

查看 寄生阻力和升阻比

剪應力

剪應力是應力的一種,定義為單位面積上所承受的力,且力的方向與受力面的法线方向正交。公式記為 \tau_.

查看 寄生阻力和剪應力

續航力

#重定向 航程 (航空).

查看 寄生阻力和續航力

飛行阻力

#重定向 阻力#空氣動力學中的阻力.

查看 寄生阻力和飛行阻力

誘導阻力

誘導阻力(induced drag)在空氣動力學中,誘導阻力是一個相對著空氣流動的物體中,和該物體運動方向相反的力。誘導阻力有著跟攻角成正比增加的特性,作用在任何因外形能改變空氣流向以產生升力的物體。例如飛機機翼產生向上的升力和汽車擾流板產生向下的下洗力。升力有增減,誘導阻力也跟著增減;當升力降至零,誘導阻力也隨之消失。 Category:空气动力学.

查看 寄生阻力和誘導阻力

超音速

超音速()簡單說,是指超過環境中音速的速度。在海平面高度,氣溫攝氏空氣中,音速大約是343米/秒(約等於1,125呎/秒、768英里/小時或1,235千米/小時),換算驗證,如。 音速,基本單位定義為1馬赫(Mach),因此,超音速常以音速倍數——馬赫數為量度單位。超過5馬赫的速度有時候稱為超高音速()。物體--有一些部份(例如轉子葉片的末梢)其周遭空氣是超過音速的情形稱為穿音速();出現這種情況,常見的物體速度值是介於0.8馬赫與1.2馬赫之間。單位換算,如。 聲音是在彈性介質中行進的振動(壓力波)。在氣體中,聲波是一種縱波,以不同速度行進,其中最相關的影響因素是氣體的分子量與溫度(氣體壓力影響較小)。既然氣體溫度與組成隨著海拔改變甚鉅,飛行器的馬赫數可以在空速未有改變下有所變動。在室溫的水中,速度超過可被視為超音速。在固體中,聲波可以是縱波或橫波,而且傳播速度更快。.

查看 寄生阻力和超音速

跨音速

跨音速(Transonic),或稱--,是一個空氣動力學名詞,指的是一個正好在音速上下的速度範圍(約0.8–1.2馬赫)。其定義為臨界馬赫數(通常是0.8馬赫附近)與一個更高速度(通常是1.2馬赫)之間的速度範圍,在這之間的速度範圍,氣流有些是超音速,也有些是亞音速。當飛行器速度超過臨界馬赫數,此時飛行器周遭的空氣流開始有部分是超音速流,空氣力學上開始出現急遽的變化,例如震波的出現;而當飛行器速度達1.2馬赫時,此時所有氣流皆為超音速,周遭氣流變得穩定。 多數現代噴射飛機以可觀的時間處在跨音速飛行。因為一個常出現在這樣速度範圍,稱為波阻(wave drag)的效應而使這樣的飛行狀態顯得重要。試圖抵抗波阻效應的變革可在所有高速飛行器上見到;最顯著的是後掠翼(swept wing)的設計,但另一個常見的形式是黃蜂腰形的機身(wasp-waist fuselage,亦稱可樂瓶機身),作為Whitcomb面積律的副產品。.

查看 寄生阻力和跨音速

黏度

黏度(Viscosity),是黏性的程度,是材料的首要功能,也称动力粘度、粘(滞)性系数、内摩擦系数。不同物质的黏度不同,例如在常温(20℃)及常压下,空气的黏度为0.018mPa·s(10^-5),汽油为0.65mPa·s,水为1 mPa·s,血液(37℃)为4~15mPa·s,橄榄油为102 mPa·s,蓖麻油为103 mPa·s,蜂蜜为104mPa·s,焦油为106 mPa·s,沥青为108 mPa·s,等等。最普通的液体黏度大致在1~1000 m Pa·s,气体的黏度大致在1~10μPa·s。糊状物、凝胶、乳液和其他复杂的液体就不好说了。一些像黄油或人造黄油的脂肪很黏,更像软的固体,而不是流动液体。 黏滯力是流體受到剪應力變形或拉伸應力時所產生的阻力。在日常生活方面,黏滯像是「黏稠度」或「流體內的摩擦力」。因此,水是「稀薄」的,具有較低的黏滯力,而蜂蜜是「濃稠」的,具有較高的黏滯力。簡單地說,黏滯力越低(黏滯係數低)的流體,流動性越佳。 黏滯力是粘性液體內部的一種流動阻力,並可能被認為是流體自身的摩擦。黏滯力主要來自分子間相互的吸引力。例如,高粘度酸性熔岩產生的火山通常為高而陡峭的錐狀火山,因為其熔岩濃稠,在其冷卻之前無法流至遠距離因而不斷向上累加;而黏滯力低的鎂鐵質熔岩將建立一個大規模、淺傾的斜盾狀火山。所有真正的流體(除超流體)有一定的抗壓力,因此有粘性。 沒有阻力對抗剪切應力的流體被稱為理想流體或無粘流體。 黏度\mu定義為流體承受剪應力時,剪應力與剪應變梯度(剪應變隨位置的變化率)的比值,数学表述为: 式中:\tau为剪应力,u为速度场在x方向的分量,y为与x垂直的方向坐标。 黏度較高的物質,比較不容易流動;而黏度較低的物質,比較容易流動。例如油的黏度較高,因此不容易流動;而水黏度較低,不但容易流動,倒水時還會出現水花,倒油時就不會出現類似的現象。.

查看 寄生阻力和黏度

阻力

阻力(又称後曳力或流體阻力)是物體在流體中相對運動所產生與運動方向相反的力。 對於一個在流體中移動的物體,阻力為周圍流體對物體施力,在移動方向的反方向上分量的總和。而施力和移動方向垂直的分量一般則視為升力。因此阻力和物體移動方向恰好相反,像飛機前進時會產生推力來克服阻力的影響。 在航天动力学中,大氣阻力可以視為太空飛行器在發射時的低效率,其影響則是在發射時需要額外的能量,不過在返回軌道時大氣阻力有助於太空飛行器減速,可減少減速額外需要的能量,不過大氣阻力產生的熱量甚至可以將物體熔化。.

查看 寄生阻力和阻力

阻力方程

阻力方程是流體力學中計算一物體在流體中運動,所受到阻力的方程式。 此方程式是由瑞利勛爵所提出,其方程式如下: 其中 參考面積A一般定義為物體在運動方向上的正交投影面積。對於形狀簡單,沒有空洞的物體(例如球),參考面即為截面。若是其他物體(例如自行車騎士的身體),A可能比任何一個截面都要大。翼形就用翼弦的平方為參考面積。由於翼弦長常定義為1,因此參考面積也是1。飛機的阻力常和其升力相比較,因此常用機翼面積(或轉子葉片面積)作為其參考面。飛艇及旋轉體使用體積阻力係數,其參考面積為其體積立方根的平方。有時一物體為了和其他物體比較阻力係數,會使用不同的參考面積,此時需特別標示所使用的參考面積。 對有尖角的物體,例如長方柱或是垂直流體方向的圓盤,在雷諾數大於1000時可以將阻力係數視為一定值。但若是圓滑的物體,例如圓柱,阻力係數會隨著雷諾數有明顯的變化,甚至到雷諾數到達107也是如此。.

查看 寄生阻力和阻力方程

邊界層

邊界層,又称附面层是一個流體力學名詞,表示流體中緊接著管壁或其他固定表面的部份。邊界層是由黏滯力產生的效應,和雷諾數Re有關。 一般提到的邊界層是指速度的邊界層。在邊界層外,流體的速度接近定值,不隨位置而變化。在邊界層內,在固定表面上流速為0,距固定表面越遠,速度會趨近一定值。.

查看 寄生阻力和邊界層

邊界層分離

邊界層分離是一種流體的現象,是指原本緊貼物體表面流動的邊界層脫離物體表面。 當固體在流體中運動(或是一靜止固體放在運動的流體中),由於黏滯力的作用,在靠近固體表面的流體會出現邊界層。依照局部流場的雷諾數不同,邊界層內的流體可分為層流或是紊流。 若邊界層受到的影響,使得邊界層相對物體的速度漸漸下降,甚至接近0,此時就會出現邊界層分離的現象。此時流體的流動脫離物體的表面,會產生渦流及渦旋。在空氣動力學中,邊界層分離會使得阻力上昇,特別是因為位在物體前後流體的壓強差上昇,使得壓差阻力變大。因此許多空氣動力學及水動力學的研究都在探討如何設計物體的表面及外形,以減緩邊界層的分離,盡可能使邊界層維持在物體的表面。由於紊流的邊界層受到逆压梯度的影響較小,因此許多物體會刻意讓表面不光滑,以產生紊流的邊界層,例如網球上的絨毛、高爾夫球上的凹孔、滑翔機上的等。輕型飛機上會有來控制邊界層的分離,高攻角飛機(如F/A-18黃蜂式戰鬥攻擊機)的機翼會有前緣延伸面,也是為了類似的目的。 在邊界層分離時,物體表面的流體會反向流動。因此會突然變厚,而且局部反向流動的流體會對物體施力Wilcox, David C.

查看 寄生阻力和邊界層分離

流体

流体(Fluid)就是在承受剪應力時將會發生連續變形的物體。气体和液体都是流体。流体沒有一定形狀,几乎可以任意改变形態,或者分裂。.

查看 寄生阻力和流体

流体力学

流體力學(Fluid mechanics)是力學的一門分支,是研究流體(包含氣體、液體及等離子體)現象以及相關力學行為的科學。流體力學可以按照研究對象的運動方式分為流體靜力學和流體動力學,前者研究處於靜止狀態的流體,後者研究力對於流體運動的影響。流體力學按照應用範圍,分為:空氣力學及水力學等等。 流體力學是連續介質力學的一門分支,是以宏觀的角度來考慮系統特性,而不是微觀的考慮系統中每一個粒子的特性。流体力学(尤甚是流體動力學)是一個活躍的研究領域,其中有許多尚未解決或部分解決的問題。流體動力學所應用的數學系統非常複雜,最佳的處理方式是利用電腦進行數值分析。有一個現代的學科稱為計算流體力學,就是用數值分析的方式求解流體力學問題。是一個將流體流場視覺化並進行分析的實驗方式,也利用了流體高度可見化的特點。 理論流體力學的基本方程是纳维-斯托克斯方程,簡稱N-S方程,纳维-斯托克斯方程由一些微分方程組成,通常只有透過給予特定的邊界條件與使用數值計算的方式才可求解。纳维-斯托克斯方程中包含速度\vec.

查看 寄生阻力和流体力学

流线型

流线型是物体的一种外部形状,通常表现为平滑而规则的表面、没有大的起伏和尖锐的棱角。流体在流线型物体表面主要表现为层流,没有或很少有湍流,这保证了物体受到较小的阻力。流线型物体通常较为美观,经常出现在产品外观设计中。 流线,用来表征三维空间的速度场。在当流场随着时间改变的时候,即非稳定流动时,Streamlines, streaklines, and pathlines三个名词含义不同。 流線型的起源可以追溯到19世紀對自然生命的研究,以及對於魚、鳥等有機形態的效能的欣賞。這些最初應用在潛艇和飛艇的設計中,以減少湍流和阻力。於第一次世界大戰前後流線型更是用於小汽車的外型設計上。今時今日,汽車、火車、飛機和輪船等交通工具早已採用了流線型的設計。 Category:设计 Category:工程學.

查看 寄生阻力和流线型

攻角

攻角(Angle of attack,縮寫為AOA,常用希臘字母α表示)為一空氣動力學名詞,為機翼之翼弦與自由流(或是相對風流的方向)之夾角;如為飛機攻角,定義則為機軸對相對風流之夾角。當機翼向上為正攻角,向下則為負攻角。 它有可能與俯仰角搞混。俯仰角是指翼弦與飛行器俯仰之夾角,而攻角是指與自由流之夾角。 機翼要有升力,則必須要有攻角或是弧度(camber)。有弧度的機翼,其零升力攻角不為零,也就是在攻角0度時,有弧線的機翼就有升力。而對稱翼不具弧線,所以在攻角0度時沒有升力,必須要有攻角,機翼才能提供升力。 當機翼因其它因素干擾,此時對於該翼剖面的相對風速可能與飛行器的相對風速不一樣,所以在翼剖面上的相對風速與翼弦之夾角才是有效攻角。最常見的情況為,在機翼翼尖的部分,因三維釋放效應,空氣由機翼下方往上翻,使得有效攻角變小,並造成額外的阻力,我們稱這種阻力為誘導阻力,而原本的攻角與有效攻角之差為誘導攻角。.

查看 寄生阻力和攻角

另见

阻力