徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

开映射定理

指数 开映射定理

在泛函分析中,开映射定理是一个基本的结果,它说明如果巴拿赫空间之间的连续线性算子是满射的,那么它就是一个开映射。更加精确地.

22 关系: 单位球面双射同构巴拿赫空间序列开集内部商空间 (线性代数)线性映射贝尔纲定理赋范空间閉圖像定理闭包闭集連續函數 (拓撲學)柯西序列极限点核 (代数)泛函分析满射无处稠密集拓撲向量空間

单位球面

数学上,单位球面是到固定中心点距离为1的点的集合,其中距离可以是任何推广了的距离概念。单位球是单位球面所包围的区域。通常一个特定的点被表示为所研究的空间的原点,并且单位球面或单位球通常以该点为中心。因此通常单位球或者单位球面就是指以原点为中心的单位球或球面。 单位球面就是半径1的球面。单位球的重要之处是任何球面可以通过平移和缩放的组合来变换为单位圆。这样一般情况的球的属性可以归约到对于单位球的研究。.

新!!: 开映射定理和单位球面 · 查看更多 »

双射

數學中,一個由集合X映射至集合Y的函數,若對每一在Y內的y,存在唯一一個在X內的x与其对应,則此函數為對射函數。 換句話說,f為雙射的若其為兩集合間的一一對應,亦即同時為單射和滿射。 例如,由整數集合\Z至\Z的函數\operatorname,其將每一個整數x連結至整數\operatorname(x).

新!!: 开映射定理和双射 · 查看更多 »

同构

在抽象代数中,同构(isomorphism)指的是一个保持结构的双射。在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射。 正式的表述是:同构是在数学对象之间定义的一类映射,它能揭示出在这些对象的属性或者操作之间存在的关系。若两个数学结构之间存在同构映射,那么这两个结构叫做是同构的。一般来说,如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的。.

新!!: 开映射定理和同构 · 查看更多 »

巴拿赫空间

在數學裡,尤其是在泛函分析之中,巴拿赫空間是一個完備賦範向量空間。更精確地說,巴拿赫空間是一個具有範數並對此範數完備的向量空間。 巴拿赫空間有兩種常見的類型:「實巴拿赫空間」及「複巴拿赫空間」,分別是指將巴拿赫空間的向量空間定義於由實數或複數組成的--之上。 許多在數學分析中學到的無限維函數空間都是巴拿赫空間,包括由連續函數(緊緻赫斯多夫空間上的連續函數)組成的空間、由勒貝格可積函數組成的Lp空間及由全純函數組成的哈代空間。上述空間是拓撲向量空間中最常見的類型,這些空間的拓撲都自來其範數。 巴拿赫空間是以波蘭數學家斯特凡·巴拿赫的名字來命名,他和漢斯·哈恩及愛德華·赫麗於1920-1922年提出此空間。.

新!!: 开映射定理和巴拿赫空间 · 查看更多 »

序列

数学上,序列是被排成一列的对象(或事件);这样,每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。.

新!!: 开映射定理和序列 · 查看更多 »

开集

開集是指不包含任何自己邊界點的集合。或者說,開集包含的任意一點的充分小的鄰域都包含在其自身中。 例如,实数线上的由不等式2规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式2\leq x \leq 5,或者2规定的区间由于包含其边界,因此不能称之为开集。 开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。(详细请参照拓扑空间).

新!!: 开映射定理和开集 · 查看更多 »

内部

数学上,特别是在拓扑学中,拓扑空间内点集 S 的内部(interior,又稱開核 open kernel)含有所有直观上“不在 S 的边界上”的 S 的点。S 的内部中的点称为 S 的内点。 等价地,S 的内部是 S 补集的闭包的补集。内部的概念在很多情况下和闭包的概念对偶。 一个集合的外部是它补集的内部,等同于它闭包的补集;它包含既不在集合内,也不在边界上的点。一个子集的内部、边界和外部一同将整个空间分为三块(或者更少,因為這三者有可能是空集)。内部和外部总是开的,而边界总是闭的。没有内部的集合叫做边缘集。.

新!!: 开映射定理和内部 · 查看更多 »

商空间 (线性代数)

在线性代数中,一个向量空间V被一个子空间N的商是将N“坍塌”为零得到的向量空间。所得的空间称为商空间(quotient space),记作V/N(读作 V模N)。.

新!!: 开映射定理和商空间 (线性代数) · 查看更多 »

线性映射

在数学中,线性映射(有的书上将“线性变换”作为其同义词,有的则不然)是在两个向量空间(包括由函数构成的抽象的向量空间)之间的一种保持向量加法和标量乘法的特殊映射。线性映射从抽象代数角度看是向量空间的同态,从范畴论角度看是在给定的域上的向量空间所构成的范畴中的态射。 “线性算子”也是与“线性映射”有关的概念。但是不同数学书籍上对“线性算子”的定义存在区别。在泛函分析中,“线性算子”一般被当做“线性映射”的同义词。而有的书则将“线性算子”定义为“线性映射”的自同态子类(详见下文)。为叙述方便,本条目在提及“线性算子”时,采用后一种定义,即将线性算子与线性映射区别开来。.

新!!: 开映射定理和线性映射 · 查看更多 »

贝尔纲定理

贝尔纲定理是点集拓扑学和泛函分析中的一个重要的工具。这个定理有两种形式,每一个都给出了拓扑空间是贝尔空间的充分条件。 该定理由勒内-路易·贝尔在他1899年的博士论文中证明。.

新!!: 开映射定理和贝尔纲定理 · 查看更多 »

赋范空间

#重定向 賦範向量空間.

新!!: 开映射定理和赋范空间 · 查看更多 »

閉圖像定理

閉圖像定理是數學中泛函分析的一條定理。.

新!!: 开映射定理和閉圖像定理 · 查看更多 »

闭包

闭包可以指:.

新!!: 开映射定理和闭包 · 查看更多 »

闭集

在拓扑空间中,闭集是指其补集为开集的集合。在一个拓扑空间内,闭集可以定义为一个包含所有其极限点的集合。在完备度量空间中,一个闭集的极限运算是闭合的。.

新!!: 开映射定理和闭集 · 查看更多 »

連續函數 (拓撲學)

在拓撲學和數學的相關領域裡,連續函數是指在拓撲空間之間的一種態射。直觀上來說,其為一個函數f,其中每一群在f(x)附近的點都會含有在x附近的一群點之值。對一個一般的拓撲空間來說,這是指f(x)的鄰域總會包含著x之鄰域的值。 在一個度量空間(如實數)裡,這是指在f(x)一定距離內的點總會包含著在x某些距離內的所有點。.

新!!: 开映射定理和連續函數 (拓撲學) · 查看更多 »

柯西序列

在数学中,一个柯西列或柯西数列是指这样一个数列,它的元素随着序数的增加而愈发靠近。更确切地说,在去掉有限个元素后,可以使得余下的元素中任何两点间的距离的最大值不超过任意给定的正数。柯西列是以数学家奥古斯丁·路易·柯西的名字命名的。 柯西列的定义依赖于距离的定义,所以只有在度量空间中柯西列才有意义。在更一般的一致空间中,可以定义更为抽象的柯西滤子和柯西网。 一个重要性质是,在完备空间中,所有的柯西数列都有极限且极限在这空间里,这就让人们可以在不求出这个极限(如果存在)的情况下,利用柯西列的判别法则证明该数列的极限是存在的。柯西列在构造具有完备性的代数结构的过程中也有重要价值,如构造实数。.

新!!: 开映射定理和柯西序列 · 查看更多 »

极限点

在数学中,非正式的说在拓扑空间 X 中的一个集合 S 的极限点(limit point),就是可以被 S 中的点(不包含 x 本身)随意“逼近”的點。这个概念有益的推广了极限的概念,并且是諸如闭集和拓扑闭包等概念的基础。实际上,一个集合是闭合的当且仅当他包含所有它的极限点,而拓扑闭包运算可以被认为是通过增加它的极限点来扩充一个集合。 一个有关的概念是序列的聚集点(cluster point)或会聚点(accumulation point)。.

新!!: 开映射定理和极限点 · 查看更多 »

核 (代数)

在归入线性代数的各种数学分支中,同态的核测量同态不及于单射的程度。 核的定义在不同上下文中采用不同的形式。但是在所有形式中,同态的核是平凡的(在与那个上下文有关的意义上),当且仅当这个同态是单射。同态基本定理(或第一同构定理)是应用于核所定义的商代数的采用了各种形式的一个定理。.

新!!: 开映射定理和核 (代数) · 查看更多 »

泛函分析

泛函分析(Functional Analysis)是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换(如傅立叶变换等)的性质的研究。这种观点被证明是对微分方程和积分方程的研究中特别有用。 使用泛函这个词作为表述源自变分法,代表作用于函数的函数,这意味着,一个函数的参数是函数。这个名词首次被雅克·阿达马在1910年使用于这个课题的书中。是泛函分析理论的主要奠基人之一。然而,泛函的一般概念以前曾在1887年是由意大利数学家和物理学家維多·沃爾泰拉(Vito Volterra)介绍。非线性泛函理论是由雅克·阿达马的学生继续研究,特别是莫里斯·弗雷歇(Maurice Fréchet)可和列维(Levy)。雅克·阿达马还创立线性泛函分析的现代流派,并由弗里杰什·里斯和一批围绕着斯特凡·巴拿赫(Stefan Banach)的波兰数学家进一步发展。.

新!!: 开映射定理和泛函分析 · 查看更多 »

满射

满射或蓋射(surjection、onto),或稱满射函数或映成函數,一个函数f:X\rightarrow Y为满射,則对于任意的陪域 Y 中的元素 y,在函数的定义域 X 中存在一點 x 使得 f(x).

新!!: 开映射定理和满射 · 查看更多 »

无处稠密集

没有描述。

新!!: 开映射定理和无处稠密集 · 查看更多 »

拓撲向量空間

拓撲向量空間是泛函分析研究中的一個基本結構。顧名思義就是要研究具有拓撲結構的向量空間。 拓撲向量空間主要都是函數空間,在上面定義的拓撲結構就是函數列收歛的條件。 希爾伯特空間及巴拿赫空間是典型的例子。.

新!!: 开映射定理和拓撲向量空間 · 查看更多 »

重定向到这里:

开映象定理

传出传入
嘿!我们在Facebook上吧! »