目录
南極座σ
南極座σ (σ Oct,σ Octantis)是南極座內星等5.6等的恆星,它所以受到重視只是因為它是現在的南極星。南極座σ距離地球大約270光年,在分類上是光譜為F0III的一顆巨星。它也是一顆盾牌δ型變星,光度以2.3小時的週期改變0.03等。 南極座σ是出現在國旗上最暗的恆星,它出現在巴西國旗,代表巴西的首都巴西利亞 。 它的位置靠近南半球的天球南極附近,因此被當成南極星,也經常被稱為南方的極星。.
查看 定位圈和南極座σ
天球
天球(英語:Celestial sphere),是在天文學和導航上想出的一個與地球同圓心,並有相同的自轉軸,半徑無限大的球。天空中所有的物體都可以當成投影在天球上的物件。地球的赤道和地理極點投射到天球上,就是天球赤道和天極。天球是位置天文學上很實用的工具。 在亞里斯多德和托勒密的模型,天球想像成實際的物體,而不僅僅是一個幾何的投影(參見天球模型)。.
查看 定位圈和天球
天極
天極是地球的自轉軸(地軸)(earth axis),向天球延伸後,在无穷远处與天球交會的兩個假想點。 夜空中的星星,看起來是從頭頂上由東向西移動,使人产生天球也在从东向西自转的感觉,这是由于人观测星空时是以地球为参考系的緣故;由于地球不是惯性系,是绕地轴持續自转,因此相對观测者而言會产生天球绕地轴自转的错觉。天球「自转」周期與地球自轉周期一樣,皆為恆星時的23小時56分04秒。 地軸延伸至无穷远处與天球相交于两点稱為天極。以地球为参考系时,观测者会观测到這兩個點是天球上唯一的一對不动的点,以此二点连线(即地轴)为基准轴,以地心为原点,以赤道平面为基准面,所建立的天球坐标系统,即是天球赤道座標系統,相应的二天极坐标的第三坐标(即赤纬)分别为分別是+90°(北天極)和-90°(南天極)。 對於天文攝影中的追蹤攝影,作為追蹤裝置的赤道儀必需先對準天極始能準確追蹤拍攝天體。.
查看 定位圈和天極
北极星
北極星是指最靠近北天極的恆星,是北半球能见到的極星。現在的北極星是小熊座α星。 由於歲差的關係,不同时期的北極星是不同的。約4800年前,當時的北極星是天龍座α星。古希臘時代,北極星是小熊座β星。到2100年左右,目前的小熊座α和北極的夾角才會變成最小(只有27'38")。到31世紀後,少衛增八(仙王座γ)將會成為北極星。14000年左右,天琴座α星(織女星)將成為北極星。.
查看 定位圈和北极星
纬度
纬度(φ)是一个地理坐标,用以确定一点在地球表面上的南北位置。纬度是一个角度,其范围从赤道的0度到南北极的90度。纬度相同的连线或其平行线,是一个与赤道平行的大圆。纬度通常与经度一起使用以确定地表上某点的精确位置。在定义经纬度的时候,做了两个抽象假设。第一,以大地水准面来代替地球的物理表面,大地水准面是一个假想的由地球上静止平衡的海平面延伸到陆地内部而形成的闭合曲面。第二,用一个数学上简单的参考表面来作为大地水准面的近似。最简单的参考表面为球面,但是用旋转椭球面来模拟大地水准面要更为准确些。经纬度在这个参考表面上的定义将在下文中详细说明,经度相同和纬度相同的点的连线共同构成了这个参考表面上的经纬网。地球真实表面上一点的纬度和其在参考表面上的对应点一致,过地球真实表面上一点作参考表面的法线,该法线与参考表面的交点即为真实表面上那一点的对应点。纬度,经度和遵循某种规范的高度共同组成了 ISO 19111 标准中所定义的地理坐标系统。 由于有不同的参考椭球面,地表上一点的纬度特征也就并不唯一。ISO标准中关于这一点的描述为:如果坐标参考系统没有完全定义,那么坐标(主要指经度和纬度)顶多是模糊不清的,至少也是毫无意义的。这对于精确的应用非常重要,比如GPS,但是,在一般的使用中,并不需要很高的精度,通常也就不提及参考椭球面。 在英文文本中,纬度通常使用小写希腊字母phi (φ)来表示。它以度、分、秒或者小数形式的度来计量,再附上N或S来表示北纬或南纬。 无论是为了使用经纬仪还是为了确定GPS卫星的轨道,纬度的测量都要求人们对地球重力场有充分的了解。研究地球的轮廓及其重力场的学科是大地测量学,这些内容将不会在此文中讨论。通过简单的名称变换,这篇文章里涉及到的地球坐标系统也可以扩展运用到月球,行星和其它天体上。 纬度数值在0至30度之间的地区称为低纬度地区;纬度数值在30至60度之间的地区称为中纬度地区;纬度数值在60至90度之间的地区称为高纬度地区。 赤道、南回归线、北回归线、南极圈和北极圈是特殊的纬线。.
查看 定位圈和纬度
经度
经度是一种用于确定地球表面上不同点东西位置的地理坐标。经度是一种角度量,通常用度来表示,并被记作希腊字母λ(lande)。子午线穿过南极和北极并把相同经度的点连起来。按照惯例,本初子午线是经过伦敦格林威治皇家天文台的子午线,是0度经线所在地。其他位置的经度是通过测量其从本初子午线向东或向西经过的角度得到的,经度的範圍为从本初子午线0° 向东至180°E 和向西至180° W。具体来说,某位置的经度是一个通过本初子午线的平面和一个通过南极、北极和该位置的平面所组成的二面角。(这就组成了一个右手坐标系,其z轴(右手拇指)从地球中心指向北极方向,其x轴(右手食指)从地球中心指向本初子午线与赤道的交点。) 如果地球是一个均质球体,那么一点的经度就等于过该点的南北铅垂面和格林尼治子午面之间夹角的角度。地球上任何地方的南北铅垂面都会包含地球的自转轴。但是地球并不是均质的,而是有很多山脉,在山脉的重力影响下,铅垂面就会偏离地球的自转轴。即便如此,南北铅垂面仍然会和格林尼治子午面相交于某个角度,该角度被称为天文经度,通过天文观测来确定。地图和GPS设备上显示的经度是格林尼治子午面与过该点的一个非严格铅垂面之间夹角的角度,该非严格铅垂面垂直于一个近似于大地水准面的椭球体表面,而不是直接垂直于大地水准面本身。 作为起点,过去其它国家或人也使用过其它的子午线做起点,比如罗马、哥本哈根、耶路撒冷、圣彼德堡、比萨、巴黎和费城等。在1884年的国际本初子午线大会上格林维治的子午线被正式定为经度的起点。東經180°即西經180°,約等同於國際日期變更線,國際日期變更線的兩邊,日期相差一日。 经度的每一度被分为60角分,每一分被分为60秒。一个经度因此一般看上去是这样的:东经23° 27′ 30"或西经23° 27′ 30"。更精确的经度位置中秒被表示为分的小数,比如:东经23° 27.500′,但也有使用度和它的小数的:东经23.45833°。有时西经被写做负数:-23.45833°。偶尔也有人把东经写为负数,但这相当不常规。 一个经度和一个纬度一起确定地球上一个地点的精确位置。纬度的每个度的距離大约相当于111km,但经度的每个度的距离从0km到111km不等。它的距离随纬度的不同而变化,沿同一緯度約等于111km乘纬度的余弦。不过这个距离还不是相隔一经度的两点之间最短的距离,最短的距离是连接这两点之间的大圆的弧的距离,它比上面所计算出来的距离要小一些。 一个地点的经度一般与它于协调世界时之间的时差相应:每天有24小时,而一个圆圈有360度,因此地球每小时自转15度。因此假如一个人的地方时比协调世界时早3小时的话,那么他在东经45度左右。不过由于时区的分划也有政治因素在里面,因此一个人所在的时区不一定与上面的计算相符。但通过对地方时的测量一个人可以算得出他所在的地点的经度。为了计算这个数据,他需要一个指示协调世界时的钟和需要观察对太阳经过子午圈的时间。由于地球在一个椭圆轨道上绕太阳旋转,这个计算和观察比上面叙述的还要复杂些。.
查看 定位圈和经度
牽星法
牽星法(Star hopping)是業餘天文學常用於在黑暗的天空中定位天體的一種技術。它可以取代或與定位圈結合在一起使用。.
查看 定位圈和牽星法
角分
角分(minute of angle,简称MOA),又稱弧分(minute of arc、arc minute或minute arc),是量度平面角的單位,符號為′,在不會引起混淆時,可簡稱作分。「角分」二字只限用於描述角度,不能於其他以「分」作單位的情況使用(如時間的分,或者考試分數)。 完整的周角为360度,1度等於60分,1分等於60 秒。以數學等式來表示即:.
查看 定位圈和角分
赤纬
赤纬(英文Declination;縮寫為Dec;符號為δ)是天文学中赤道座標系統中的两个坐标数据之一,另一个坐标数据是赤经。赤纬与地球上的纬度相似,是纬度在天球上的投影。赤纬的单位是度,更小的单位是“角分”和“角秒”,天赤道为0度,天北半球的赤纬度数为正数,天南半球的赤纬的度数为负数。天北极为+90°,天南极为-90°。值得注意的是正号也必须标明。 例如,织女星的确切赤纬(曆元2000.0)为+38°47'01"。 在观测者天顶的赤纬与該觀測地的纬度相同。.
查看 定位圈和赤纬
赤经
赤經(英文Right ascension;縮寫為RA;符號為α)是天文學使用在天球赤道座標系統內的座標值之一,通过天球两极并与天赤道垂直,另一個座標值是赤緯。.
查看 定位圈和赤经
赤道座標系統
#重定向 赤道坐標系統.
查看 定位圈和赤道座標系統
赤道仪
赤道儀是以一根平行於地球自轉軸旋轉的軸,就能追隨著天空(天球)旋轉的儀器裝置。這種類型的裝置常用於望遠鏡、衛星碟和相機。赤道儀的優勢在於它能夠允許聯接在其上的裝置只需要以固定的速率驅動一根軸就可以追蹤天空中以周日運動運行的任何天體。當做為衛星碟時,赤道儀的裝置允許只轉動一根軸就能同時指向好幾顆地球同步衛星。.
查看 定位圈和赤道仪
GoTo望遠鏡
"GoTo望遠鏡"在業餘天文學中是指望遠鏡架台內安裝入相關軟體,可以接受指令自動指向使用者所選擇天體的光學望遠鏡。GoTo架台的兩個軸都裝有驅動馬達,可以透過微處理器-以積體電路為基礎的控制器或個人電腦來操作。這允許使用者可以輸入命令,以天體的赤經和赤緯值,或是以預先儲存的資料,包括梅西爾目錄、NGC 目錄和太陽系主要的天體(太陽、月球和行星),讓望遠鏡指向目標。 像一個標準的赤道儀架台,GoTo赤道儀架台驅動赤經軸來追蹤夜空中的天體。由於GoTo技術下的架台,兩個軸都由電腦來控制,因此使得經緯儀架台追蹤天體的機制也可以簡化。.
查看 定位圈和GoTo望遠鏡
業餘天文學
業餘天文學,是對觀察天體有興趣且樂在其中的人所從事的行為。也就是通常意義上的天文愛好者所從事的夜空或白天觀測目標或攝影活動,通常使用可移動式望遠鏡、雙筒望遠鏡和肉眼進行觀察。 一些天文愛好者常進行大型的集體觀星活動(連續數天),借此互相觀摩經驗和聚會,使用望遠鏡心得等;這樣的集體活動被稱爲交流會(star party),尤以美、日較流行,中國亦已興起此活動。.
查看 定位圈和業餘天文學
游标卡尺
游标卡尺,又称为游标尺或直游标尺,是一种测量长度的仪器。由主尺和附在主尺上能滑动的游标两部分构成。主尺一般以毫米为单位。根据分格的不同,游标卡尺可分为十分度游标卡尺、二十分度游标卡尺、五十分度格游标卡尺等。.
查看 定位圈和游标卡尺
星圖
星圖或天體圖是夜空的地圖;亦即是「星星的地圖」。 天文學家用網格來劃分,使它們更容易使用。它們被用來識別和定位恆星、星座和星系。自古以來,人類就利用星圖來導航。請注意,星圖與星表或天體目錄不同,後者適用於特定用途的天體清單或表單。不同的星圖工具還包括星盤和活動星圖。.
查看 定位圈和星圖
星曆表
星曆表,簡稱曆表,源自希臘文ἐφήμερος(ephemeros),刊載一個或多個天體每天特定時刻位置的數據表列,通常還附帶其他補充材料;而天文年曆也是星曆表的一種。 星曆表最早源於Johannes Stadius在1554年出版的「auctae新星曆表」,該星曆表列出行星位置,但未完全正確。例如在Stadius星曆表中水星位置就有10度以上的週期性誤差。 表中列出每天在特定時刻(正午或子夜)的太陽系天體的視位置(直角座標系統的地平高度、赤道座標系的赤經與赤緯、黃道座標系的黃經與黃緯等)用於高精度測量的星曆表更會列出較亮恆星的位置,因計算之恆星以上萬計,所編成的星曆表亦相當厚。 星曆表至少可以推導過去與未來數個世紀的天體位置。雖然天體力學計算的精度已很高,對不久的未來的位置可依賴計算得知。但長遠而言仍有不確定的因素,例如為數眾多質量仍未知的小行星所造成的攝動是不能被忽略。星曆表最常用在天體測量時校對天體的特殊位置,地球上這種差異極小,很多時候不會被注意到,但對於測量接近地球的小行星或是精確校正月球位置時,此時差異就變得很重要,因為這可能意味著一些外在因素使其有這樣的變化出現或者是檢定儀器或人為方面的誤差等。 現在更有用於電腦上,可動態演示位置的天文軟件出現,能列出天上幾乎任何天體,行星和其衛星的動態位置,如果有需要還可列出彗星或小行星,通常只需幾個點擊就可列出,十分方便;星曆表為太空船的太空探測、以及地面望遠鏡對恆星和星系的觀測與定位提供重要資訊。.
查看 定位圈和星曆表
旋轉編碼器
旋轉編碼器(rotary encoder)也稱為軸編碼器,是將旋轉位置或旋轉量轉換成模拟或数字信号的機電設備。一般裝設在旋轉物體中垂直旋轉軸的一面。旋轉編碼器用在許多需要精確旋轉位置及速度的場合,如工業控制、机器人技术、專用鏡頭、電腦輸入裝置(如鼠标及轨迹球)等。 旋轉編碼器可分為絕對型(absolute)編碼器及增量型(incremental)編碼器兩種。增量型編碼器也稱作相對型編碼器(relative encoder),利用檢測脈衝的方式來計算轉速及位置,可輸出有關旋轉軸運動的資訊,一般會由其他設備或電路進一步轉換為速度、距離、每分鐘轉速或位置的資訊。絕對型編碼器會輸出旋轉軸的位置,可視為一種角度傳感器。.
查看 定位圈和旋轉編碼器