徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

摄星镜

指数 摄星镜

摄星镜 (astrographic camera) 是一台专门为天文摄影设计的望远.

21 关系: 反射望远镜天体测量学小行星尋星鏡彗星冥王星克莱德·汤博CCD矮行星焦比行星角分變星黄道自行里奇-克萊琴望遠鏡折反射望远镜折射望远镜恒星光谱流星体新星

反射望远镜

反射望遠鏡是使用曲面和平面的面鏡組合來反射光線,並形成影像的光學望遠鏡,而不是使用透鏡折射或彎曲光線形成圖像的屈光鏡。 反射望远镜所用物镜为凹面镜,有球面和非球面之分;比较常见的反射望远镜的光学系统有牛顿望远镜与卡塞格林望远镜。 反射望远镜的性能很大程度上取决于所使用的物镜。通常使用的球面物镜具有容易加工的特点,但是如果所设计的望远镜焦比比较小,则会出现比较严重的光学球面像差;这时,由于平行光线不能精确的聚焦于一点,所以物像将会变得模糊。因而大口径,强光力的反射望远镜的物镜通常采用非球面设计,最常见的非球面物镜是抛物面物镜。由于抛物面的几何特性,平行於物镜光轴的光线将被精确的汇聚在焦点上,因而能大大改善像质。但即使是抛物面物镜的望远镜仍然会存在轴外像差。.

新!!: 摄星镜和反射望远镜 · 查看更多 »

天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

新!!: 摄星镜和天体测量学 · 查看更多 »

小行星

小行星是太陽系内類似行星環繞太陽運動,但體積和質量比行星小得多的天體。 至今為止在太陽系內一共已經發現了約127萬顆小行星,但這可能僅是所有小行星中的一小部分,只有少數這些小行星的直徑大於100公里。到1990年代為止最大的小行星是穀神星,但近年在古柏帶內發現的一些小行星的直徑比穀神星要大,比如2000年發現的伐樓拿(Varuna)的直徑為900公里,2002年發現的誇歐爾(Quaoar)直徑為1280公里,2004年發現的厄耳枯斯的直徑甚至可能達到1800公里。2003年發現的塞德娜(小行星90377)位於古柏帶以外,其直徑約為1500公里。 根據估計,小行星的數目應該有數百萬,詳見小行星列表,而最大型的小行星現在開始重新分類,被定義為矮行星。.

新!!: 摄星镜和小行星 · 查看更多 »

尋星鏡

尋星鏡是架設在主要的天文望遠鏡上,並指向相同方向的小型輔助望遠鏡。尋星鏡的放大倍率通常比主要的望遠鏡小了許多,因此可以看見更廣闊的天空範圍,這有助於在夜空中尋找到所需的天體。一些尋星鏡距有十字絲用來確定主鏡可以看見的物體。 尋星鏡上通常會有一個AxB的標記,其中的A是放大倍數,B是以厘米(mm)表示的尋星鏡物鏡的口徑;例如6X30的尋星鏡意思是物镜口徑30mm,放大6倍。雙筒望遠鏡也使用相同的表示法。 一架6x30的尋星鏡在業餘的望遠鏡上是最小的有效尺寸,8X50或是更大的尋星鏡會更受歡迎。許多廉價的望遠鏡只配置5X24或更小的尋星鏡,在某些情況下,因為內部的遮光罩還會使真正的光圈比標示的還要小。 大部分尋星鏡的指向屬於下面三種的形式之一:.

新!!: 摄星镜和尋星鏡 · 查看更多 »

彗星

彗星(Comet,有時也被誤記為慧星)是由冰構成的太陽系小天體(SSSB),當他朝向太陽接近時,會被加熱並且開始釋氣,展示出可見的大氣層,也就是彗髮,有時也會有彗尾。這些現象是由太陽輻射和太陽風共同對彗核作用造成的。彗核是由鬆散的冰、塵埃、和小岩石構成的,大小從P/2007 R5的數百米至海爾博普彗星的數十公里不等,但大部分都不會超過16公里。 彗星的軌道週期範圍也很大,可以從幾年到幾百萬年。短週期彗星來自超越至海王星軌道之外的柯伊伯帶,或是與離散盤有所關聯 。長週期彗星被認為起源於歐特雲,這是在古柏帶外面,伸展至最近恆星一半距離上,由冰凍天體構成的球殼。長週期彗星受到路過恆星和銀河潮汐的引力攝動而直接朝向太陽前進。雙曲線軌道的彗星可能在進入內太陽系之前曾經被沿著雙曲線軌跡被拋射至星際空間,則只會穿越太陽系一次。來自太陽系外,在銀河系內可能是常見的系外彗星也曾經被檢測到。 彗星與小行星的區別只在於存在著包圍彗核的大氣層,未受到引力的拘束而擴散著。這些大氣層有一部分被稱為彗髮(在中央包圍著彗核的大氣層),其它的則是彗尾(受到來自太陽的太陽風電漿和光壓作用,從彗髮被剝離的氣體、塵埃、和帶電粒子,通常呈線性延展的部分)。然而,熄火彗星因為已經接近太陽許多次,幾乎已經失去了所有可揮發的氣體和塵埃,所以就顯得類似於小的小行星。小行星被認為與彗星有著不同的起源,是在木星軌道內側形成的,而不是在太陽系的外側。主帶彗星和活躍的半人馬小行星的發現,已經使得小行星和彗星之間的差異變得模糊不清。 ,已經知道的彗星有4,894顆,其中大約有1,500顆是克魯茲族彗星和大約484顆短週期彗星,而且這個數量還在穩定的增加中。然而,這只是潛在彗星族群中微不足道的數量:估計在外太陽系的儲藏所內類似的彗星體數量可能達到一兆顆。儘管大多數的彗星都是暗淡和不夠引人注目的,但平均大概每年會有一顆裸眼可見的彗星,其中特別明亮的就會被稱為"大彗星"。 在2014年1月22日,ESA科學家的報告首次明確的指出在矮行星穀神星,也是小行星帶中最大的天體,有水氣存在。這項檢測是通過赫歇爾太空望遠鏡使用遠紅外線技術完成的。此一發現是出人意料之外的,因為彗星,不是小行星,才會有這種典型的"噴流萌芽和羽流"。根據其中一位科學家的說法:"彗星和小行星之間的區隔是越來越模糊了"。 古代也有彗星出现的记录,古人一般認為彗星是凶兆。.

新!!: 摄星镜和彗星 · 查看更多 »

冥王星

冥王星(小行星序号:134340 Pluto。天文代號:♇,Unicode編碼U+2647)是柯伊伯带中的矮行星。冥王星是第一颗被发现的柯伊伯带天体。冥王星是太阳系内已知体积最大、质量第二大的矮行星。在直接围绕太阳运行的天体中,冥王星体积排名第九,质量排名第十。冥王星是体积最大的海王星外天体,其质量仅次于位于离散盘中的阋神星。与其他柯伊伯带天体一样,冥王星主要由岩石和冰组成。冥王星相对较小,仅有月球质量的六分之一、月球体积的三分之一。冥王星的轨道离心率及倾角皆较高,近日点为30天文单位(44亿公里),远日点为49天文单位(74亿公里)。冥王星因此周期性进入海王星轨道内侧。海王星与冥王星因相互的轨道共振而不会碰撞。在冥王星距太阳的平均距离上阳光需要5.5小时到达冥王星。 1930年克莱德·汤博发现冥王星,并将其视为第九大行星。1992年后在柯伊伯带发现的一些质量与冥王星相若的冰制天体挑战冥王星的行星地位。2005年发现的阋神星质量甚至比冥王星质量多出27%,国际天文联合会(IAU)因此在翌年正式定义行星概念。新定义将冥王星排除行星范围,将其划为矮行星(類冥矮行星)。 冥王星目前已知的卫星总共有五颗:冥卫一、冥卫二、冥卫三、冥卫四、冥卫五。冥王星与冥卫一的共同质心不在任何一天体内部,因此有时被视为一联星系统。IAU并没有正式定义矮行星联星,因此冥卫一仍被定义为于冥王星的卫星。 2015年7月14日新视野号探测器成为首架飞掠冥王星的宇宙飞船。在飞掠的过程中,新视野号对冥王星及其卫星进行细致的观测。.

新!!: 摄星镜和冥王星 · 查看更多 »

克莱德·汤博

克莱尔·威廉·汤博(Clyde William Tombaugh,),美国天文学家,1930年獨立发现冥王星。.

新!!: 摄星镜和克莱德·汤博 · 查看更多 »

CCD

CCD可以指:.

新!!: 摄星镜和CCD · 查看更多 »

矮行星

行星(別稱中行星、準行星、侏儒行星)是具有行星級質量,但既不是行星,也不是衛星的太陽系天體。也就是說,它是直接環繞著太陽,並且自身的重力足以達成流體靜力平衡的形狀(通常是球體),但未能清除鄰近軌道上的其它小天體和物質。 矮行星這個項目是國際天文學聯合會在2006年8月通過環繞太陽天體的三種分類定義的一部分,導致新增加了發現的比海王星離太陽更遠的天體,其大小足以和冥王星匹敵,並且最後質量超過冥王星的天體,例如鬩神星。2006年,在國際天文學聯合會的行星定義上決議將矮行星排除在外,對此學界評價兩極。天文學家麥克·布朗認為這是正確的決定,而他是鬩神星和其它新矮行星的發現者。但拒絕接受這樣定義的阿蘭·斯特恩(Alan Stern),卻是在1991年4月創造矮行星這個名詞的天文學家。 國際天文學聯合會(IAU)目前承認的矮行星有5顆:、冥王星、、和。布朗批評官方的認可:「一個理性的人可能會認為,太陽系裡面只有5顆符合IAU定義的已知矮行星,但這些理性的人將無從修正。」 在另一份有數百顆已知的天體列在其中的清單,被懷疑都是太陽系的矮行星,估計在完整的探索過整個古柏帶之後,可能會發現200顆矮行星,而在探索過古柏帶以外的區域後,矮行星的總數可能超過10,000顆。個別的科學家認定的還有一些,麥克-布朗在2011年8月發表的清單中,從幾乎可以肯定到有可能是矮行星,就有390顆候選天體。布朗目前標示的11顆已知天體 -除5顆是已經被IAU認可的之外,還有(225088) 2007 OR10、、、、(307261) 2002 MS4和—是「幾乎可以確定」的,另外還有12顆是極有可能的Mike Brown, Accessed 2013-11-15。斯特恩也指出還有十多顆已知的矮行星Alan Stern,, August 24, 2012。 然而,只有兩顆天體,穀神星和冥王星,有足夠詳細的觀測資料可以確定它們符合國際天文學聯合會的定義。國際天文學聯合會接受鬩神星是矮行星,是因為它比冥王星更大。他們附帶決議尚未命名的海王星外天體,它們的絕對星等必須大於 +1(這意味著假設幾何反照率 ≤ 1,直徑就必須≥838公里),就會據以假設是矮行星來命名。目前,只有鳥神星和妊神星是依據這個程序被承認是矮行星。國際天文學聯合會還沒有討論其它可能是矮行星天體的相關問題。 在其它行星系統的分類中,並未列出矮行星的特徵。.

新!!: 摄星镜和矮行星 · 查看更多 »

焦比

在光學中,一個光學系統中的焦比(f-number,或稱F值、F比例、相對孔徑、光圈值等,习惯上也简称「光圈」)表達鏡頭的焦距和光圈直徑大小的關係。簡單來說,焦比等於焦距數除以孔徑數。焦比是無因次量的,它代表了攝影學中的一個重要概念:鏡速(Lens speed)的量。.

新!!: 摄星镜和焦比 · 查看更多 »

行星

行星(planet;planeta),通常指自身不發光,環繞著恆星的天體。其公轉方向常與所繞恆星的自轉方向相同(由西向東)。一般來說行星需具有一定質量,行星的質量要足夠的大(相對於月球)且近似於圓球狀,自身不能像恆星那樣發生核聚變反應。2007年5月,麻省理工學院一組空间科學研究隊發現了已知最熱的行星(2040攝氏度)。 隨著一些具有冥王星大小的天體被發現,「行星」一詞的科學定義似乎更形迫切。歷史上行星名字來自於它們的位置(与恒星的相对位置)在天空中不固定,就好像它們在星空中行走一般。太陽系内肉眼可見的5顆行星水星、金星、火星、木星和土星早在史前就已經被人類發現了。16世紀後日心说取代了地心说,人類瞭解到地球本身也是一顆行星。望遠鏡被發明和萬有引力被發現後,人類又發現了天王星、海王星,冥王星(2006年后被排除出行星行列,2008年被重分類為类冥天体,属于矮行星的一种)還有為數不少的小行星。20世紀末人類在太陽系外的恆星系統中也發現了行星,截至2013年7月12日,人類已發現2000多顆太陽系外的行星。.

新!!: 摄星镜和行星 · 查看更多 »

角分

角分(minute of angle,简称MOA),又稱弧分(minute of arc、arc minute或minute arc),是量度平面角的單位,符號為′,在不會引起混淆時,可簡稱作分。「角分」二字只限用於描述角度,不能於其他以「分」作單位的情況使用(如時間的分,或者考試分數)。 完整的周角为360度,1度等於60分,1分等於60 秒。以數學等式來表示即:.

新!!: 摄星镜和角分 · 查看更多 »

變星

變星是指亮度與電磁輻射不穩定的,經常變化並且伴隨著其他物理變化的恆星。 多數恆星在亮度上幾乎都是固定的。以我們的太陽來說,太陽亮度在11年的太陽週期中,只有0.1%變化。然而有許多恆星的亮度確有顯著的變化。這就是我們所說的變星。 變星可以大致分成以下兩種形態:.

新!!: 摄星镜和變星 · 查看更多 »

黄道

道是太阳在天球上的视运动轨迹,它是黄道坐标系的基准。另外,黄道也指太阳视运动轨迹所在的平面,它和地球绕太阳的轨道共面(看起来像是太阳绕着地球转) 。太阳的视运动轨迹并不能经常被观测到,地球自转产生了日出与日落的变化,这掩盖了太阳相对其他星星运动的轨迹。 黃道是在一年當中太陽在天球上的視路徑,看起來它在群星之間移動的路徑,明顯的也是行星在每年中所經過的路徑。更明確的說,它是球狀的表面(天球)與黃道平面的交集;以幾何學來描述,它是包含地球環繞太陽運行的平均軌道平面。 西方的黃道(ecliptic)一詞是從蚀(eclipse)發生的地方延伸出來的。 由于地球公转受到月球和其他行星的摄动,地球公转轨道并不是严格的平面,即在空间产生不规则的连续变化,这种变化包括多项短周期的和一项缓慢的长期运动。短周期运动可以通过一定时期内的平均加以消除,消除了周期运动的轨道平面称为瞬时平均轨道平面。.

新!!: 摄星镜和黄道 · 查看更多 »

自行

自行是恆星相對於太陽系的質量中心,隨著時間變化的推移所顯示出在位置在角度上的改變,它的測量是以角秒/年為單位(3600角秒才等同於角度的1度)。反之,徑向速度是在視線方向上天體接近或遠離的速度,隨著時間推展的變化率,通常是測量輻射中的都卜勒頻移。自行不是恆星的本質(即恆星的內稟性質),因為它包含了太陽系本身運動的元素在內。由於光速是有限的,遙遠恆星的真實速度很難觀測得到,觀測自行反映的是恆星當時輻射光的運動。 自行的測量需要排除下列會影響觀測天體位置座標值的因素,這些因素主要有:.

新!!: 摄星镜和自行 · 查看更多 »

里奇-克萊琴望遠鏡

里奇-克萊琴望遠鏡(RCT, Ritchey-Chrétien telescope)是專業的卡塞格林望遠鏡(Cassegrain),被設計用來消除彗形像差,與常規的配置比較,相對地能提供更大的視野。RCT的主鏡和次鏡都是雙曲面鏡,是在1910年代早期由美國天文學家喬治·威利斯·里奇(George Willis Ritchey)和法國天文學家亨利·克萊琴(Henri Chrétien)發明的。里奇在1927年率先建造出一架口徑0.5米的RCT,第二架也是里奇在美國海軍天文臺(United States Naval Observatory)製造的一米RCT。.

新!!: 摄星镜和里奇-克萊琴望遠鏡 · 查看更多 »

折反射望远镜

反射折射這個名詞在光學系統中的意思就是既有透鏡也有面鏡的系統。反射折射的光學系統常用在望遠鏡和照相機使用的質輕、長焦透鏡。 通常的设计是利用特殊形状的透镜来修正反射镜的像差。反射望远镜镜系统的物镜虽然没有色差,但球面反射镜存在球面像差,而且焦距越长的球面反射镜对加工精度要求越高。非球面的抛物面反射镜虽然在光轴中心不存在像差,但在光轴以外存在球差和彗差,而且加工难度大,成本也高。折反射望远镜就是针对反射系统的这些缺点,而试图利用透镜折射系统的优点来补偿。 目前世界上常见的折反射望远镜类型有两种,施密特式和马克苏托夫式。.

新!!: 摄星镜和折反射望远镜 · 查看更多 »

折射望远镜

折射望遠鏡是一種使用透鏡做物鏡,利用屈光成像的望遠鏡。折射望遠鏡最初的設計是用於偵查和天文觀測,但也用於其他設備上,例如雙筒望遠鏡、長焦距的遠距照像攝影機鏡頭。较常用的折射望远镜的光学系统有两种形式:即伽利略望远镜和开普勒望远镜,其优点是成像比较鲜明、锐利;缺点是有色差。.

新!!: 摄星镜和折射望远镜 · 查看更多 »

恒星光谱

在天文學,恆星分類是將恆星依照光球的溫度分門別類,伴隨著的是光譜特性、以及隨後衍生的各種性質。根據維恩定律可以用溫度來測量物體表面的溫度,但對距離遙遠的恆星是非常困難的。恆星光譜學提供了解決的方法,可以根據光譜的吸收譜線來分類:因為在一定的溫度範圍內,只有特定的譜線會被吸收,所以檢視光譜中被吸收的譜線,就可以確定恆星的溫度。早期(19世紀末)恆星的光譜由A至P分為16種,是目前使用的光譜的起源。 恒星光谱分类 20世纪初,美国哈佛大学天文台对50万颗恒星进行了光谱研究。他们根据恒星不同的谱线进行了分类,结果发现它们与颜色也有关系.

新!!: 摄星镜和恒星光谱 · 查看更多 »

流星体

流星體是太陽系內,小至沙塵(sand),大至巨礫(boulder),成為顆粒狀的碎片。流星體進入地球(或其它行星)的大氣層之後,在路徑上發光並被看見的階段則被稱為流星。許多流星來自相同的方向,並在一段時間內相繼出現,則稱為流星雨。.

新!!: 摄星镜和流星体 · 查看更多 »

新星

新星是激变变星的一类,是由吸積在白矮星表面的氫造成劇烈的核子爆炸的現象。这类星通常原本都很暗,难以发现,爆发时突然增亮,被认为是新产生的恒星,因此而得名。新星按光度下降速度分为快新星(NA)、中速新星(NAB)、慢新星(NB)和甚慢新星(NC),爆发时亮度会增加几万、几十万甚至几百万倍,持续几星期或几年。但不能和Ia超新星或其它恆星的爆炸混淆,包括加州理工學院在2007年5月首度發現的發光紅新星。 目前在银河系中已发现超过200颗新星。.

新!!: 摄星镜和新星 · 查看更多 »

重定向到这里:

天体照相仪

传出传入
嘿!我们在Facebook上吧! »