徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
安装
比浏览器更快的访问!
 

夫朗和斐譜線

指数 夫朗和斐譜線

--,是一系列以德國物理學家約瑟夫·夫朗和斐(1787年─1826年)為名的光譜線,這些是最初被當成太陽光譜中的暗特徵譜線。 英國的化學家威廉·海德·沃拉斯頓是在1802年第一位注意到有一定數量的黑暗特徵譜線出現在太陽光譜中,夫朗和斐獨立地再度發現這些譜線,並且開始系統性的研究與測量這些譜線。最後,他繪出了570條的譜線,並且以字母A到K標示出主要的特徵譜線,較弱的則以其他的字母標示。 後來古斯塔夫·基爾霍夫和羅伯特·本生確認了每一條譜線所對應的化學元素,並推論在太陽光譜中的暗線是由在太陽上層的那些元素吸收造成的,有些被觀察到的特徵譜線則是地球大氣層中的氧分子造成的。 主要的夫朗和斐譜線和對應的元素列在下表: 名稱元素波長(nm) 名稱元素波長(nm) y氧(O2)898.765 c鐵(Fe)495.761 Z氧(O2)822.696 FH β486.134 A氧(O2)759.370 d鐵(Fe)466.814 B氧(O2)686.719 e鐵(Fe)438.355 CH α656.281 G'H γ434.047 a氧(O2)627.661 G鐵(Fe)430.790 D1鈉(Na)589.592 G鈣(Ca)430.774 D2鈉(Na)588.995 hH δ410.175 D3 (or d)氦(He)587.5618 H鈣(Ca+)396.847 e汞(Hg)546.073 KCa+393.368 E2鐵(Fe)527.039 L鐵(Fe)382.044 b1鎂(Mg)518.362 N鐵(Fe)358.121 b2鎂(Mg)517.270 P鈦(Ti)+336.112 b3鐵(Fe)516.891 T鐵(Fe)302.108 b4鐵(Fe)516.751 t鎳(Ni)299.444 b4鎂(Mg)516.733 夫朗和斐譜線中的C-、F-、G'-、和h- 線對應於氫原子巴耳末系的α、β、γ、和δ線,D1和D2線是著名的「鈉雙線」,中心波長是(589.29 nm)以字母"D"標示的589.29 nm。 注意在一些譜線的字母有分歧,這是夫朗和斐譜線中的d-線,可能對應於鐵的藍色譜線466.814 nm或是氦3(D3)的黃色譜線587.5618 nm;相似的還有e-線,暨對應於汞(水銀),也對應於鐵。為了解決在使用上出現的二義性,對模凌兩可的夫朗和斐譜線會指明對應的元素(也就是汞e-線或鐵e-線)。 由於夫朗和斐譜線的波長都已經明確的被定義,所以常被用作說明光學材料的折射率和色散特性。 夫朗和斐譜線也是著名的吸收譜線,因而整個太陽吸收光譜常被稱為「夫朗和斐光譜」(夫琅禾费光譜)。.

24 关系: 古斯塔夫·基爾霍夫可见光吸收 (光学)吸收光譜太陽太陽天文學年表巴耳末系德国化學元素光的色散約瑟夫·夫朗和斐纳米阿贝数折射率

古斯塔夫·基爾霍夫

古斯塔夫·罗伯特·克希荷夫(Gustav Robert Kirchhoff,),德国物理学家。在电路、光谱学的基本原理(两个领域中各有根据其名字命名的克希荷夫定律)有重要贡献,1862年创造了“黑体”一词。1847年发表的两个电路定律发展了欧姆定律,对电路理论有重大作用。1859年制成分光仪,并与化学家罗伯特·威廉·本生一同创立光谱化学分析法,从而发现了铯和铷两种元素。同年还提出热辐射中的基尔霍夫辐射定律,这是辐射理论的重要基础。.

新!!: 夫朗和斐譜線和古斯塔夫·基爾霍夫 · 查看更多 »

可见光

可見光(Visible light)是電磁波譜中人眼可以看見(感受得到)的部分。這個範圍中電磁輻射被稱為可見光,或簡單地稱為光。人眼可以感受到的波長範圍一般是落在390到700nm。對應於這些波長的頻率範圍在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。.

新!!: 夫朗和斐譜線和可见光 · 查看更多 »

吸收 (光学)

吸收,在物理學上是光子的能量由另一個物體,通常是原子的電子,擁有的過程,因此電磁能會轉換成為其它的形式,例如熱能。波傳導的過程中,光線的吸收通常稱為衰減。例如,一個原子的價電子在兩個不同能階之間轉換,在這個過程中光子將被摧毀,被吸收的能量會以輻射能或熱能的形式再釋放出來。雖然在某些情況下 (通常是光學中),介質會因為穿過的波強度和飽和吸收 (或非線性吸收)發生時會改變它透明度,但通常情況下,波的吸收與強度無關 (線性吸收)。.

新!!: 夫朗和斐譜線和吸收 (光学) · 查看更多 »

吸收光譜

吸收光譜是材料在某一些頻率上對電磁輻射的吸收事件所呈現的比率。實際上,吸收光譜是與發射光譜相對的。 每一種化學元素都會在幾個對應於能階軌道的特定波長上產生吸收線,因此吸收譜線可以用來鑑定氣體或液體中所含的元素。這種方法也可以用在不可能直接去測量的恆星和其他的氣體上出現的現象。.

新!!: 夫朗和斐譜線和吸收光譜 · 查看更多 »

太陽

#重定向 太阳.

新!!: 夫朗和斐譜線和太陽 · 查看更多 »

太陽天文學年表

這是太陽的天文學年表,記錄人類有關太陽的發現。.

新!!: 夫朗和斐譜線和太陽天文學年表 · 查看更多 »

巴耳末系

巴耳末系或巴耳末線是原子物理學中氫原子六個發射譜線系列之一的名稱。 巴耳末系的計算可以使用約翰·巴耳末在1885年發現的巴耳末公式- 一個經驗式。 來自氫原子所發射的光譜線在可見光有4個波長:410奈米、434奈米、486奈米和656奈米。它們是吸收光子能量的電子進入受激態後,返回主量子數n等於2的量子狀態時釋放出的譜線。.

新!!: 夫朗和斐譜線和巴耳末系 · 查看更多 »

德国

德意志联邦共和国(Bundesrepublik Deutschland/),简称德国(Deutschland),是位於中西歐的联邦议会共和制国家,由16个-zh-hans:联邦州; zh-hant:邦;-组成,首都与最大城市为柏林。其国土面积约35.7万平方公里,南北距离为876公里,东西相距640公里,从北部的北海与波罗的海延伸至南部的阿尔卑斯山。气候温和,季节分明。德国人口约8,180万,为欧洲联盟中人口最多的国家,也是世界第二大移民目的地,仅次于美国。 在50万年前的舊石器時代晚期,海德堡人及其後代尼安德特人生活在今德國中部。自古典時代以來各日耳曼部族開始定居於今日德國的北部地區。公元1世紀時,有羅馬人著作的關於“日耳曼尼亞”的歷史記載。在公元4到7世紀的民族遷徙期,日耳曼部族逐漸向歐洲南部擴張。自公元10世紀起,德意志領土組成神聖羅馬帝國的核心部分。16世紀時,德意志北部地區成為宗教改革中心。在神聖羅馬帝國滅亡後,萊茵邦聯和日耳曼邦聯先後建立,1871年,在普魯士王國主導之下,多數德意志邦國統一成為德意志帝國,「德意志」開始做為國名使用。在第一次世界大戰和1918-1919年德國革命後,德意志帝國解體,議會制的威瑪共和國取而代之。1933年納粹黨獲取政權並建立獨裁統治,最終導致第二次世界大戰及系統性種族滅絕的發生。在戰敗並經歷同盟國軍事佔領後,德國分裂为德意志聯邦共和國(西德)和德意志民主共和國(東德)。在1990年10月3日重新統一成為現在的德國。国家元首为联邦总统,政府首脑則为联邦总理。 德國是世界大國之一,其國内生產總值以國際匯率計居世界第四,以購買力評價計居世界第五。其諸多工業工程和科技部門位居世界前列,例如全球馳名的德國車廠、精密部件等,為世界第三大出口國。德國為發達國家,生活水平居世界前列。德國人也以熱愛大自然聞名,都市綠化率極高,也是歐洲再生能源大國,是可持續發展經濟的樣板,除了強調環境保護與自然生態保育,在人為飼養活體的態度十分嚴謹,不但獲得大量外匯和資訊優勢,其動物保護法律管束、生命教育水準也是首屈一指的,在高等教育方面並提供免費大學教育,並具備完善的社會保障制度和醫療體系,催生出拜爾等大藥廠。 德国为1993年欧洲联盟的创始成员国之一,为申根区一部分,并于1999年推动欧元区的建立。德国亦为联合国、北大西洋公约组织、八国集团、20国集团及经济合作与发展组织成员。其军事开支总额居世界第九。 德語是歐盟境内使用人數最多的母語。德國文化的豐富層次和對世界的影響表現在其建築和美術、音樂、哲學以及電影等等。德國的文化遺產主要以老城為代表。另外國家公園和自然公園共計有上百處。.

新!!: 夫朗和斐譜線和德国 · 查看更多 »

化學元素

化學元素指自然界中一百多种基本的金属和非金属物质,同一種化學元素是由相同的原子組成,也就是其原子中的每一核子具有同样数量的質子,用一般的化学方法不能使之分解,并且能构成一切物质。一些常見元素的例子有氫、氮和碳。 原子序數大於82的元素(即鉛之後的元素)沒有穩定的同位素,會進行放射衰變。另外,第43和第61種元素(即锝和鉕)沒有穩定的同位素,會進行衰變。可是,即使是原子序數大於94,沒有穩定原子核的元素,有些仍可能存在在自然界中,如鈾、釷、钚等天然放射性核素。 所有化學物質都包含元素,即任何物質都包含元素,隨著人工的核反應,會發現更多的新元素。 1923年,国际原子量委员会作出决定:化学元素是根据原子核电荷的多少对原子进行分类的一种方法,把核电荷数相同的一类原子称为一种元素。 2012年,總共有118種元素被發現,其中地球上有94種。.

新!!: 夫朗和斐譜線和化學元素 · 查看更多 »

光的色散

#重定向 色散 (光學).

新!!: 夫朗和斐譜線和光的色散 · 查看更多 »

約瑟夫·夫朗和斐

#重定向 约瑟夫·冯·夫琅和费.

新!!: 夫朗和斐譜線和約瑟夫·夫朗和斐 · 查看更多 »

纳米

纳米(符號 nm,nanometre、nanometer,字首 nano 在希臘文中的原意是「侏儒」的意思),是一个長度單位,指1米的十億分之一(10-9m)。 有時候也會見到埃米(符號 Å)這個單位,為10-10m。 1納米(nm).

新!!: 夫朗和斐譜線和纳米 · 查看更多 »

阿贝数

阿贝数是德国物理学家恩斯特·阿贝发明的物理学数,也称"V-数",用来衡量介质的光线色散程度.

新!!: 夫朗和斐譜線和阿贝数 · 查看更多 »

钠(Natrium,化学符号:Na)是一种化学元素,它的原子序数是11,相对原子质量为23。鈉单质不會在地球自然界中存在,因為鈉在空氣中會迅速氧化,並與水產生劇烈反應,所以常見於化合物中,元素狀態的鈉通常以特殊物質(如石蠟、煤油)保存,以防與空氣中的水份或氧氣產生化合物。.

新!!: 夫朗和斐譜線和钠 · 查看更多 »

鈦是化學元素,化學符號Ti,原子序數22,是銀白色過渡金屬,其特徵為重量輕、強度高、具金屬光澤,亦有良好的抗腐蝕能力(包括海水、王水及氯氣)。由于其稳定的化学性质,良好的耐高温、耐低温、抗强酸、抗强碱,以及高强度、低密度,常用來製造火箭及太空船,因此獲美誉为“太空金属”。鈦於1791年由格雷戈爾於英國康沃爾郡發現,並由克拉普羅特用希臘神話的泰坦為其命名。 钛被认为是一种稀有金属,这是由于在自然界中其存在分散并难于提取。但其相对丰度在所有元素中居第十位。鈦的礦石主要有鈦鐵礦及金紅石,廣佈於地殼及岩石圈之中。鈦亦同時存在於幾乎所有生物、岩石、水體及土壤中。從主要礦石中萃取出鈦需要用到克羅爾法或亨特法。鈦最常見的化合物是二氧化鈦,可用於製造白色顏料。其他化合物還包括四氯化鈦(TiCl4,作催化劑及用於製造煙幕或)及三氯化鈦(TiCl3,用於催化聚丙烯的生產)。 鈦能與鐵、鋁、釩或鉬等其他元素熔成合金,造出高強度的輕合金,在各方面有着廣泛的應用,包括宇宙航行(噴氣發動機、導彈及航天器)、軍事、工業程序(化工與石油製品、海水淡化及造紙)、汽車、農產食品、醫學(義肢、骨科移植及牙科器械與填充物)、運動用品、珠寶及手機等等。 鈦最有用的兩個特性是,抗腐蝕性,及金屬中最高的強度-重量比。在非合金的狀態下,鈦的強度跟某些鋼相若,但卻還要輕45%。有兩種同素異形體和五種天然的同位素,由46Ti到50Ti,其中豐度最高的是48Ti(73.8%)。鈦的化學性質及物理性質和鋯相似,這是因為兩者的價電子數目相同,並於元素週期表中同屬一族。.

新!!: 夫朗和斐譜線和钛 · 查看更多 »

钙(Calcium)是一種化学元素。其化学符号是Ca,原子序数是20。鈣是银白色的碱土金属,具有中等程度的軟性。雖然在地殼的含量也很高,為地殼中第五豐富的元素,占地殼總質量3%,因其化學活性頗高,可以和水或酸反應放出氫氣,或是在空氣中便可氧化(形成緻密氧化層(氧化鈣)),因此在自然界多以離子狀態或化合物形式存在,而沒有单质存在。在工業的主要礦物來源如石灰岩、石膏等,在建筑(水泥原料)、肥料、制鹼、和医疗上用途佷广。.

新!!: 夫朗和斐譜線和钙 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

新!!: 夫朗和斐譜線和铁 · 查看更多 »

镁(Magnesium)是一种化学元素,它的化学符号是Mg,它的原子序数是12,是一種银白色的碱土金属。鎂是在地球的地殼中第八豐富的元素,約佔2%的質量,亦是宇宙中第九多元素。.

新!!: 夫朗和斐譜線和镁 · 查看更多 »

是一種化學元素,化學符號為Ni,原子序數為28。它是一種有光澤的銀白色金屬,其銀白色帶一點淡金色。鎳屬於過渡金屬,質硬,具延展性。純鎳的化學活性相當高,這種活性可以在反應表面積最大化的粉末狀態下看到,但大塊的鎳金屬與周圍的空氣反應緩慢,因為其表面已形成了一層帶保護性質的氧化物。即使如此,由於鎳與氧之間的活性夠高,所以在地球表面還是很難找到自然的金屬鎳。地球表面的自然鎳都被封在較大的鎳鐵隕石裏面,這是因為隕石在太空的時候接觸不到氧氣的緣故。在地球上,這種自然鎳總會和鐵結合在一起,這點反映出它們都是超新星核合成主要的最終產物。一般認為地球的地核就是由鎳鐵混合物所組成的。 鎳的使用(天然的隕鎳鐵合金)最早可追溯至公元前3500年。阿克塞尔·弗雷德里克·克龙斯泰特於1751年最早分離出鎳,並將它界定為化學元素,儘管他最初把鎳礦石誤認為銅的礦物。鎳的外語名字來自德國礦工傳說中同名的淘氣妖精(Nickel,與英語中魔鬼別稱"Old Nick"相近),這是由於鎳銅礦不能用煉銅的方法煉出銅來,所以被比擬成妖魔。鎳最經濟的主要來源為鐵礦石褐鐵礦,含鎳量一般為1-2%。鎳的其他重要礦物包括硅鎂鎳礦及鎳黃鐵礦。鎳的主要生產地包括加拿大的索德柏立區(一般認為該處是隕石撞擊坑)、太平洋的新喀里多尼亞及俄羅斯的諾里爾斯克。 由於鎳在室溫時的氧化緩慢,所以一般視為具有耐腐蝕性。歷史上,因為這一點鎳被用作電鍍各種表面,例如金屬(如鐵及黃銅)、化學裝置內部及某些需要保持閃亮銀光的合金(例如鎳銀)。世界鎳生產量中的約6%仍被用於抗腐蝕純鎳電鍍。鎳曾經是硬幣的常見成份,但現時這方面已大致上被較便宜的鐵所取代,尤其是因為有些人的皮膚對鎳過敏。儘管如此,英國還是在皮膚科醫生的反對下,於2012年開始再使用鎳鑄造錢幣。 只有四種元素在室溫時具有鐵磁性,鎳就是其中一種。含鎳的鋁鎳鈷合金永久磁鐵,其磁力強度介乎於含鐵的永久磁鐵與稀土磁鐵之間。鎳在現代世界的的地位主要來自於它的各種合金。全世界鎳產量中的約60%被用於生產各種鎳鋼(特別是不鏽鋼)。其他常見的合金,還有一些的新的高溫合金,就幾乎就佔盡了餘下的世界鎳用量。用於製作化合物的化學用途只佔了鎳產量的不到3%。作為化合物,鎳在化學製造有好幾種特定的用途,例如作為氫化反應的催化劑。某些微生物和植物的酶用鎳作為活性位點,因此鎳是它們重要的養分。.

新!!: 夫朗和斐譜線和镍 · 查看更多 »

折射率

某种介质的折射率  等于光在真空中的速度  跟光在介质中的相速度  之比: (nv.

新!!: 夫朗和斐譜線和折射率 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 夫朗和斐譜線和氢 · 查看更多 »

氦(Helium,舊譯作氜)是一种化学元素,其化学符号是He,原子序数是2,是一种无色的惰性气体,放电时发橙红色的光。在常温下,氦是一种极轻的无色、无臭、无味的单原子气体。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在银河系佔24%。.

新!!: 夫朗和斐譜線和氦 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 夫朗和斐譜線和氧 · 查看更多 »

汞是化学元素,俗稱水銀,臺灣亦可寫作銾,化学符号Hg,原子序数80,是種密度大、銀白色、室温下為液態的過渡金属,為d区元素。常用來製作溫度計。在相同條件下,除了汞之外是液體的元素只有溴。銫、鎵和銣會在比室溫稍高的溫度下熔化。汞的凝固點是,沸點是,汞是所有金屬元素中液態溫度範圍最小的。 汞在全世界的矿产中都有产出,主要来自朱砂(硫化汞)。摄入或吸入的朱砂粉尘都是剧毒的。汞中毒还能由接触可溶解于水的汞(例如氯化汞和甲基汞)引起,或是,吸入汞蒸气或者食用被汞污染的海产品或吸食入汞化合物引起中毒。 汞可用于溫度計、氣壓計、壓力計、血壓計、浮閥、水銀開關和其他裝置,但是汞的毒性導致汞溫度計和血壓計在醫療上正被逐步淘汰,取而代之的是酒精填充,鎵、銦、錫的填充,-zh-cn:数码;zh-tw:數位;zh-hk:數碼;-的或者基於電熱調節器的溫度計和血壓計。汞仍被用于科學研究和補牙的汞合金材料。汞也被用于發光。荧光燈中的電流通过汞蒸氣產生波長很短的紫外線,紫外線使荧光體发出荧光,從而產生可見光。.

新!!: 夫朗和斐譜線和汞 · 查看更多 »

重定向到这里:

夫琅和費線夫琅和费谱线夫琅禾费光谱夫琅禾费线

传出传入
嘿!我们在Facebook上吧! »