徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

太陽圈電流片

指数 太陽圈電流片

太陽圈電流片(Heliospheric current sheet,缩写为HCS)或太陽圈電流頁Dr.是太陽系內部磁場極性发生轉換的表面,這個區域在太陽圈內沿著太陽赤道平面延伸。电流片的形状是受到行星際物質中太阳磁场旋转的影响而形成的,厚度大約为10,000公里,有一小股电流在电流片中流动,大小约为10-10A/m2。 电流片下面的磁场称为行星际磁场,其产生的电流构成了一部分太陽圈電流迴路Israelevich, P.L., et al., 2001, Astronomy and Astrophysics, 376, 288. 。太陽圈電流片有時也稱為行星際電流片。.

14 关系: 太阳系太陽圈安培尤金·派克中央研究院中央研究院天文及天文物理研究所磁場白克蘭電流行星際物質黃道面阿基米德螺线银河系极光汉尼斯·阿尔文

太阳系

太陽系Capitalization of the name varies.

新!!: 太陽圈電流片和太阳系 · 查看更多 »

太陽圈

太陽圈(heliosphere)是太陽所能支配或控制的太空區域。太陽圈的邊緣是一個磁性氣狀泡,並且遠遠的超出冥王星之外。從太陽"吹"出的電漿,也就是所謂的太陽風,創建和維護著這個鼓起的泡沫,並且抵抗來自銀河系的氫氣和氦氣,也就是外面的星際物質,滲入的壓力。太陽風從太陽向外流動,直到遭遇到終端震波,然後在那兒突然的減速。航海家太空船積極的探測太陽圈的邊界,穿越過震波和進入日鞘,這是要到達太陽圈最外層的邊緣,稱為日球層頂的過渡區。當太陽在空間中移動時,太陽圈的整體形狀是由星際物質控制的,它似乎不是一個完美的球形。以有限的資料用於未探勘過的自然界,已經推導出許多理論的架結構。 在2013年9月12日,NASA宣布航海家一號已經在2012年8月25日穿過太陽圈,當時它測量到的電漿密度突然增加了40倍。因為日鞘標誌著太陽風和其餘銀河系的一種邊界,可以說航海家一號已經離開太陽系,抵達星際空間。.

新!!: 太陽圈電流片和太陽圈 · 查看更多 »

安培

安培,简称安,是国际单位制中电流强度的单位,符号是A。同时它也是国际单位制中七个基本单位之一另外六个是米、开尔文、秒、摩尔、坎德拉和千克。安培是以法国数学家和物理学家安德烈-马里·安培命名的,为了纪念他在经典电磁学方面的贡献。 实际情况中,安培是对单位时间内通过导体横截面的电荷量的度量。1秒内通过横截面的电量为1库仑(个电子的电量)时,电流大小為1安培。 比安培小的電流可以用毫安、微安等單位表示。.

新!!: 太陽圈電流片和安培 · 查看更多 »

尤金·派克

尤金·派克(Eugene N. Parker,),美國天文學家。.

新!!: 太陽圈電流片和尤金·派克 · 查看更多 »

中央研究院

中央研究院(簡稱中研院)為中華民國最高層級的國家學術研究機構、台灣學術研究的最高殿堂。直接隸屬於總統府。其任務包括人文及科學研究,指導、聯絡及獎勵學術研究,培養高級學術研究人才,並兼有科學與人文之研究。現位於臺北南港舊庄,現任院長為廖俊智。中研院所屬之研究員、副研究員與助研究員,其位階相當於大學教授、副教授與助理教授,台灣的頂尖大學也經常藉由合聘與兼任的方式,聘請中研院研究員充實其師資陣容與指導研究生。.

新!!: 太陽圈電流片和中央研究院 · 查看更多 »

中央研究院天文及天文物理研究所

中華民國中央研究院天文及天文物理研究所(Institute of Astronomy and Astrophysics, Academia Sinica,縮寫為 ASIAA)是中央研究院的其中一個研究單位,前身是中央研究院在南京時期的天文研究所。該研究所現位於國立臺灣大學總校區內的天文數學館。.

新!!: 太陽圈電流片和中央研究院天文及天文物理研究所 · 查看更多 »

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

新!!: 太陽圈電流片和磁場 · 查看更多 »

白克蘭電流

白克蘭電流是沿著聯結地球磁層的磁場線流進地球高緯度電離層的一股電流。在地球的磁層,這股電流由太陽風和行星際磁場以及體積龐大的電漿驅動著(由行星際磁場間接的驅動著它們的對流)。白克蘭電流的強度與磁層中的活動一起變化(例如在期間)。在朝上的電流片(電子向下流動)中小尺度的擾動加速磁層中的電子,當它們抵達大氣層的上層,就會創造出極光(南極光和北極光)。在高緯度的點離層(或極光帶),白克蘭電流經由在該區電離層垂直於磁場線的極光接通。兩對白克蘭電流在場匹配電流片中成對的出現,一對由正午處通過黃昏側延伸到子夜處,另一對從正午區經由黎明側也延伸到子夜區。在極光帶高緯度這一側的電流片稱為第一區,低緯度那一側的電流片稱為第二區。 這種電流是曾經遠征北極圈研究極光的挪威探險家兼物理學家克里斯汀·白克蘭在1908年預測的。他使用簡單的測量磁場儀器,重新發現安德斯·攝爾修斯和他的助理在一個多世紀前的發現:當極光出現時磁強計會改變方向。這可能只意味著電流在大氣層之上流動,但他從理論上說明不知何故太陽會發出陰極射線 out-of-print, full text online,和從現在被稱太陽風的粒子進入地球的磁場並創造出電流,從而產生極光。這種看法受到當時其他的研究者蔑視,但在1967年,一顆衛星被發射進入極光帶,顯示白克蘭預測的電流確實存在。為了尊崇他和他的理論,這種電流被命名為白克蘭電流。在露西·賈戈的書中對白克蘭電流的發現有著很好的說明。 瑞典阿爾芬實驗室的名譽教授寫道:"為甚麼對白克蘭電流特別感興趣?是因為電漿被迫攜帶它們,而它們會導致大量的物理過程(、不穩定性、精細結構的形成)。這些又回過頭來導致像是包括正和負的、和元素分離(像是氧離子的差別彈射)。瞭解這兩類現象在天文物理上獲得的利益遠超過了解我們地球自己的太空環境。".

新!!: 太陽圈電流片和白克蘭電流 · 查看更多 »

行星際物質

行星際物質是填充在太陽系的物質,太陽系內較大的天體,如行星,小行星和彗星都運行在其間。.

新!!: 太陽圈電流片和行星際物質 · 查看更多 »

黃道面

道面(plane of the ecliptic)的定义中,是假想地球是不动的,而太陽绕地球旋转。黄道面即为太陽绕地球旋转的轨道平面,目前与地球赤道面交角为23°26'。由于月球和其它行星等天体的引力影响地球的公转运动,黄道面在空间的位置总是在不规则地连续变化。但在变动中,任一时间这个平面总是通过太阳中心。黄道面和天球相交的大圆称为黄道。 黃道面與赤道面的交集稱為交點線(line of nodes)。春分點與秋分點都包含於交點線,是交點線與黃道的交集。.

新!!: 太陽圈電流片和黃道面 · 查看更多 »

阿基米德螺线

阿基米德螺线(Archimedean spiral),亦称“等速螺线”。当一点P沿动射线OP以等速率运动的同时,这射线又以等角速度绕点O旋转,点P的轨迹称为“阿基米德螺线”。它的极坐标方程为:\, r.

新!!: 太陽圈電流片和阿基米德螺线 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 太陽圈電流片和银河系 · 查看更多 »

极光

極光(Aurora)是在高緯度(北極和南極)的天空中,帶電的高能粒子和高層大氣(熱層)中的原子碰撞造成的發光現象。帶電粒子來自磁層和太陽風,在地球上,它們被地球的磁場帶進大氣層。大多數的極光發生在所謂的“極光帶”,在觀察上,這是在所有的經度上距離地磁極10°至20°,緯度寬約3°至6°的帶狀區域。太陽風受到地球的磁場導引直接進入大氣層。當磁暴發生時,在較低的緯度也會出現極光。极光不只在地球上出现,太阳系内的其他一些具有磁场的行星上也有极光。 在英、法等许多西方语言中,人们遵照伽利略的习惯,直接用奥罗拉(Aurora)女神的名字来称呼极光现象。.

新!!: 太陽圈電流片和极光 · 查看更多 »

汉尼斯·阿尔文

漢尼斯·奧洛夫·哥斯達·阿爾文(Hannes Olof Gösta Alfvén,),瑞典等离子体物理学家、天文学家,致力于磁流体动力学领域的研究,其成果被广泛应用天体物理学、地质学等学科。1970年诺贝尔物理学奖得主。初時為工程師,後來轉為研究及教授等離子學及電子工程。.

新!!: 太陽圈電流片和汉尼斯·阿尔文 · 查看更多 »

重定向到这里:

太陽風層電流頁

传出传入
嘿!我们在Facebook上吧! »