目录
多边形
多邊形是平面的封閉图形、由有限線段(大于2)組成,且首尾連接起來劃出的形狀。.
查看 外角定理和多边形
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
查看 外角定理和三角形
內角和外角
在幾何學中,多邊形的內角是指由多邊形相鄰兩邊所形成的角度。多邊形在每一個頂點都有一內角。 若一個簡單、封閉的多邊形,其每個內角都小於180°,此多邊形稱為凸多边形。 而多邊形的外角是指由多邊形的一邊和鄰邊的延長線所形成的角度。每一個頂點都會有兩個外角,但其大小相等。.
查看 外角定理和內角和外角
角
在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.
查看 外角定理和角