徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

均三甲苯

指数 均三甲苯

均三甲苯(mesitylene),又名1,3,5-三甲苯,分子式C9H12,是苯环上三个氢对称地被三个甲基取代而得到的芳香烃。.

24 关系: 偏三甲苯可燃性大气化学失水反应官能团对流层臭氧丙炔丙酮化工刺激性催化剂硫酸科学研究羟醛缩合甲基燃烧芳香烃蒸馏邻三甲苯核磁共振氢谱挥发性有机物显影剂

偏三甲苯

偏三甲苯(1,2,4-Trimethylbenzene)是一种无色液体,化学式C9H12,是三甲苯三种同分异构体之一。 偏三甲苯存在于煤焦油和石油(约3%),几乎不溶于水,溶于乙醇,乙醚和苯;易燃,具有强烈气味。 在工业上,偏三甲苯从石油分馏的碳九芳烃馏分中分离提取,该馏分中含有大约40%的偏三甲苯。.

新!!: 均三甲苯和偏三甲苯 · 查看更多 »

可燃性

可燃性是物质的一种化学性质,表示这种物质在达到一定的温度时可以在空气或氧气中燃烧,这个温度叫做燃点。具有可燃性的物质称作可燃物。 Category:化学性质 Category:火災預防.

新!!: 均三甲苯和可燃性 · 查看更多 »

大气化学

大气化学是研究大气组成和化学过程的学科,是大气科学的一个重要分支学科。大气化学研究的空间范围从城市、区城向全球扩展,研究的时间尺度从几天到几年,以至几十年。大气化学研究的对象包括大气、气溶胶、大气放射性物质和降水化学等:研究的空间范围主要是对流层和平流层;研究的手段有现场观测、实验室模拟和数值模拟等。研究大气化学要涉及与光化学、均相非均相反应动力学、大气扩散理论、痕量分析化学等领域;不仅研究大气的化学反应,还要研究大气的复杂物理化学过程的数值模拟。大气化学的主要分支有:大气痕量组成化学、对流层化学、平流层化学,如臭氧层的破坏、气溶胶化学、降水化学、大气放射性物质化学。.

新!!: 均三甲苯和大气化学 · 查看更多 »

失水反应

失水反应,也称脱水反应,是消除反应的一类,反应中反应物发生化学反应脱去水。加速失水反应进行的化学试剂一般称为失水剂。醇失水成烯或醚的反应是常见的失水反应之一,反应通常需要借助布朗斯特酸催化,以使不好的离去基团羟基(-OH)转化为易离去的水(-OH2+)。 有机合成中的失水反应主要有:.

新!!: 均三甲苯和失水反应 · 查看更多 »

官能团

官能团(英文:Functional group),是决定有机化合物的化学性质的原子和原子团。.

新!!: 均三甲苯和官能团 · 查看更多 »

对流层臭氧

在对流层裡存在的臭氧属于一种对生物有害的污染物,是光化学烟雾的组成部分之一(而平流层(臭氧层)中的臭氧则是对生物至关重要的紫外线吸收剂)。许多涉及化学能量快速转化的人类活动,如内燃机开动、复印机工作等等,都会产生臭氧,危害人类健康。经常用激光打印机将会有臭氧的气味,在高浓度时会中毒。臭氧(O3)是一种强氧化剂,容易与其他化学物质反应生成许多有毒的氧化物。 对流层从地球表面延伸至10~18千米高度(其厚度与纬度相关),内部又可分为许多层,而臭氧主要集中在混合层(即从对流层到平流层的过渡区)。而在混合层下方,也就是绝大多数生物生活的高度(距地面0~10千米),臭氧的浓度相对很低,但由于它容易对人类健康产生不良影响,因此是一个亟待解决的环保问题。 对流层臭氧属于温室气体。臭氧容易和空气中的烃类气体(如甲烷等)发生氧化反应,因此空气中臭氧浓度的高低直接决定了上述烃类气体在空气中的存在时间。 如今人们已经可以利用人造卫星测量对流层臭氧的浓度。()针对地表臭氧浓度的测量需要利用原位监测技术。.

新!!: 均三甲苯和对流层臭氧 · 查看更多 »

丙炔

丙炔,又稱甲基乙炔,是一種炔烴,其結構簡式為CH3C≡CH。它是MAPP氣體(風焊氣體)的其中一種成分。.

新!!: 均三甲苯和丙炔 · 查看更多 »

丙酮

丙酮也稱作二甲基酮、二甲基甲酮,简称二甲酮,或称醋酮、木酮,是最简单的酮,化學式CH3COCH3,為一種有特殊臭味、薄荷气味的無色可燃液體。.

新!!: 均三甲苯和丙酮 · 查看更多 »

化工

化工,是下列事物的簡稱:.

新!!: 均三甲苯和化工 · 查看更多 »

刺激性

刺激(英語:Irritation),是心理学或生理学的一种表现,心理学通常是指受某种情況的人类刺激下,如社交網站,受到擔憂而產生抑鬱等不良精神狀況,亦含有長期性狀況;生理学通常則指炎症或因为过敏而产生疼痛或激烈反应。一个能引起刺激反应的物质被叫做「刺激剂」,例如苯酚和辣椒素。药物、热量、辐射(例如紫外线)或游离辐射等都可能产生刺激。严重的刺激,如食肉菌,需面臨截肢療程。 应激性是生物所具备的基本特征之一,是生物适应性的表现之一,指生物对外界的刺激能做出反应。通常地,对生物构成刺激的同时,生物会产生应激性行为。比如含羞草应对外界触摸刺激会闭拢叶片。 文学角度上的刺激是主观感受,与生物化学角度上的刺激是不同的。.

新!!: 均三甲苯和刺激性 · 查看更多 »

催化剂

催化劑又稱觸媒,是能透過提供另一活化能較低的反應途徑而加快化學反應速率,而本身的質量、組成和化學性質在參加化學反應前後保持不變的物質。例如二氧化錳可以作為過氧化氫(雙氧水)分解的催化劑。與催化劑相反,能減慢反應速率的物質稱為抑制劑。過去曾用的「負催化劑」一詞已不被國際純粹與應用化學聯合會所接受,而必須改用抑制劑一詞,催化劑一詞僅指能加快反應速率的物質。.

新!!: 均三甲苯和催化剂 · 查看更多 »

硫酸

硫酸(化学分子式為)是一种具有高腐蚀性的强矿物酸,一般為透明至微黄色,在任何浓度下都能与水混溶并且放热。有时,在工业製造过程中,硫酸也可能被染成暗褐色以提高人们对它的警惕性。 作為二元酸的硫酸在不同浓度下有不同的特性,而其对不同物质,如金属、生物组织、甚至岩石等的腐蚀性,都归根于它的强酸性,以及它在高浓度下的强烈脱水性(化学性质)、吸水性(物理性质)与氧化性。硫酸能对皮肉造成极大的伤害,因为它除了会透过酸性水解反应分解蛋白质及脂肪造成化学烧伤外,还会与碳水化合物发生脱水反应并造成二级火焰性灼伤;若不慎入眼,更会破坏视网膜造成永久失明。故在使用时,应做足安全措施。另外,硫酸的吸水性可以用来干燥非碱性气体 。 正因為硫酸有不同的特性,它也有不同的应用,如家用强酸通渠剂、铅酸蓄电池的电解质、肥料、炼油厂材料及化学合成剂等。 硫酸被广泛生產,最常用的工业方法為接触法。.

新!!: 均三甲苯和硫酸 · 查看更多 »

科学研究

科学研究,简称科研,是一个科际整合研究领域,旨在使科学纳入广泛的社会、历史和哲学范畴。它使用各种方法分析科学知识及其知识论和符号学的产生、表达和接收。 与文化研究类似,科学研究由研究的主题来定义,包含大范围的不同理论和方法的观点和实践。科学研究可能会使用跨学科的方法,或借用其它学科的方法,比如人文科学、自然科学和形式科学,从科学计量学到民族学方法论或认知科学。科学研究对和科学政策无疑具有重要性。该领域在过去十年增加很多技术,并开始利用科技与社会,在公共领域促进专家和普通大众的知识交互。.

新!!: 均三甲苯和科学研究 · 查看更多 »

羟醛缩合

羟醛缩合是一种有机反应:烯醇或烯醇负离子和羰基化合物反应形成β-羟基醛或者β-羟基酮,然后发生脱水得到共轭烯酮。 羟醛缩合在有机合成当中很重要,它是形成碳碳单键的关键条件之一,罗宾逊成环反应中有一步就是羟醛缩合反应。羟醛缩合在大学有机化学课程中常作为一个经典构建碳键的反应进行讲解,并用该反应介绍反应机理。 在普通的羟醛缩合反应中,包涵了酮的烯醇对于醛的亲核加成,形成β-羟基酮或者“羟醛”(广泛出现于各种天然产物及药物中的一种结构单元)。 羟醛缩合在生物化学中也同样广泛存在。羟醛反应自身由醛缩酶催化,然而该反应不是正式的缩合反应,这是因为过程中并未脱除小分子。 反应在醛和酮之间发生(交叉羟醛缩合),或者在两个醛之间发生,则称为Claisen-Schmidt缩合反应。这些反应都被冠以发现人的名字莱纳·路德维希·克莱森和J.G.施密特。他们分别于1880和1881年发表了自己在该领域的论文。 一个相关的例子是合成二亚苄基丙酮。.

新!!: 均三甲苯和羟醛缩合 · 查看更多 »

甲基

基(Methyl group),为化學名词,指一种和甲烷對應的疏水性烷基官能團,化學式為-CH3,常簡寫做-Me。甲基常見於許多的有機化合物中,多半是相當穩定的官能團。甲基多半是較大化學分子中的一部份,不過偶爾也會以以下三種形式出現:陰離子、陽離子及自由基。其陽離子有八個價電子,陰離子有十個價電子,這三種形式都非常不穩定,很容易和其他化學物質反應。.

新!!: 均三甲苯和甲基 · 查看更多 »

燃烧

燃燒是物體快速氧化,產生光和熱的過程。 燃烧的本质是氧化还原反应。广义燃烧不一定要有氧气参加,任何发光、发热、剧烈的氧化还原反应,都可以叫燃烧。 燃燒需要三種要素並存才能發生,分別是可燃物如燃料、助燃物如氧氣、以及溫度要達到燃点。燃燒三要素並稱為火三角。助燃物是燃燒反應中的氧化劑,氧氣是燃燒反應中最常見的助燃物,但其他化合物也可能是助燃物,例如鎂帶可以在二氧化碳中燃燒,此時二氧化碳即為助燃物。 在一個完整的燃燒反應中,一物質和氧化劑(如氧氣、氟氣)反應,其生成物為燃料的各元素氧化反應後的產物。例如: 然而在真實情況下不可能達到完整的燃燒反應。當燃燒反應達到化學平衡時,會產生多種主要和次要產物;例如燃燒碳時會產生一氧化碳和煤煙。此外,在大氣中發生燃燒反應時,因為大氣中含有78%的氮氣的緣故,會產生各式各樣的氮氧化物和氮化物。.

新!!: 均三甲苯和燃烧 · 查看更多 »

芳香烃

芳香烃(aromatic hydrocarbons,简称芳烃)為苯及其衍生物的總稱,乃指分子结构中含有一个或者多个苯环的烃类化合物。名稱來源由於有機化學發展初期,這一類化合物幾乎都在揮發性、有香味的物質中發現,例如:從安息香膠中取得安息香酸,自苦杏仁油取得苯甲醛等。但後來許多性質應屬芳香族的化合物,卻沒有擁有香味,因此現今芳香烴,意指的只是這些含有苯環的化合物。其中最简单和最重要的芳香烃是苯及其同系物甲苯、二甲苯、乙苯等。在芳香族中,一些芳香環中並不完全是苯的結構,而是其中的碳原子,會被氮、氧、硫等元素取代,我們稱之為雜環,例如:像是呋喃的五元環中,包括一個氧原子,吡咯中含有一個氮原子,噻吩含有一個硫原子等。 而芳烃可分为:.

新!!: 均三甲苯和芳香烃 · 查看更多 »

蒸馏

蒸馏(英語:Distillation、Distilled)是一种热力学的分离工艺,它利用混合液体或液-固体系中各组分沸点不同,使低沸点组分蒸发,再冷凝以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,如萃取、吸附等相比,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。.

新!!: 均三甲苯和蒸馏 · 查看更多 »

邻三甲苯

#重定向 连三甲苯.

新!!: 均三甲苯和邻三甲苯 · 查看更多 »

4.92MPa |- | bgcolor.

新!!: 均三甲苯和苯 · 查看更多 »

核磁共振氢谱

核磁共振氢谱 (也称氢谱, 或者 1H谱) 是一种将分子中氢-1的核磁共振效应体现于核磁共振波谱法中的应用。可用来确定分子结构。 当样品中含有氢,特别是同位素氢-1的时候,核磁共振氢谱可被用来确定分子的结构。氢-1原子也被称之为氕。 简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(氘.

新!!: 均三甲苯和核磁共振氢谱 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

新!!: 均三甲苯和氢 · 查看更多 »

挥发性有机物

揮發性有機物(Volatile Organic Compounds,首字母縮略字:VOCs),有時也用TVOC來表示 (Total Volatile Organic Compound)。 按照世界衛生組織的定義,如果在氣壓101.32kPa下,該化合物的沸點在50℃-250℃,就是揮發性有機物。它們會在常溫下以氣體形式存在。按其化學結構的不同,可以進一步分為八類:烷類、芳烴類、烯類、鹵代烴類、酯類、醛類、酮類和其他。VOC的主要成分有:烴類、鹵代烴、氧烴和氮烴,它包括:苯系物、有機氯化物、氟里昂系列、有機酮、胺、醇、醚、酯、酸和石油烴化合物等。 例如,甲醛,它由油漆及傢俱中揮發出來,其沸點只有-19°C。.

新!!: 均三甲苯和挥发性有机物 · 查看更多 »

显影剂

显影剂可指下列藥劑:.

新!!: 均三甲苯和显影剂 · 查看更多 »

重定向到这里:

1,3,5-三甲苯

传出传入
嘿!我们在Facebook上吧! »