我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

化學能

指数 化學能

化學能是內能的一種,指一些需要經由化學反應釋放出來的能量。例如煤的能量是由燃燒(與氧反應)釋放出來的,貯存於煤裏面的能量即稱為化學能。電池裡的化學物質,是藉著化學變化而產生電能。 生物裡呼吸作用、光合作用產生之能量,也是化學能。 由於化學能是化學反應時產生的,因此是一種隱蔽的能量,不能直接用來做功,只有在发生化学变化时,才释放出来,变成热能或者其他形式的能量。.

目录

  1. 10 关系: 化学反应呼吸作用内能光合作用电能电池燃烧能量

  2. 化学能

化学反应

化學反應是一個或一個以上的物質(又稱作反應物)經由化學變化转化為不同於反應物的产物的過程。 化學變化定義為當一個接觸另一個分子合成大分子;或者分子經斷裂分開形成兩個以上的小分子;又或者是分子內部的原子重組。為了形成變化,化學反應通常和化學鍵的形成與斷裂有關。特別注意化學反應不會以任何方式改變原子核,而仅限於在原子外的電子雲交互作用。雖然核變形後可能會引發化學反應,但是核反應與化學反應無關。 化學性質是物質只能在化學變化中表現出來的性質,例如有酸鹼性、氧化还原性质、熱穩定性、反应性等等。.

查看 化學能和化学反应

呼吸作用

呼吸作用,又称為细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解並转化能量的化學过程,也稱為釋放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核細胞中,粒線體是與呼吸作用最有關聯的胞器,呼吸作用的幾個關鍵性步驟都在其中進行。 呼吸作用是一種酶促氧化反应。雖名為氧化反應,不論有否氧气参与,都可称作呼吸作用(這是因為在化學上,有電子轉移的反應過程,皆可稱為氧化)。有氧气参与時的呼吸作用,稱之為有氧呼吸;没氧气参与的反應,則称为无氧呼吸。 呼吸作用的目的,是透過釋放食物裡之能量,以製造三磷酸腺苷,即細胞最主要的直接能量供應者。呼吸作用的氢與氧的燃燒,但兩者間最大分別是:呼吸作用透過一連串的反應步驟,一般的一次性釋放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂質的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透過數個步驟,将能量转移到还原性氢(化合价为0的氢)中。最後經過一連串的電子傳遞鏈,氢被氧化生成水;原本貯存在其中的能量,則转移到ATP分子上,供生命活动使用。.

查看 化學能和呼吸作用

内能

在熱力學裡,內能(internal energy)是熱力學系統內兩個具狀態變數之基本狀態函數的其中一個函數。內能是指系統所含有的能量,但不包含因外部力場而產生的系統整體之動能與位能。內能會因系統能量的增損而隨之改變。 系統的內能可能因(1)對系統加熱、(2)對系統作,或(3)添加或移除物質而改變。當系統內有不可穿透的牆阻止物質傳遞時,該系統稱之為「封閉系統」。如此一來,熱力學第一定律描述,內能的增加會等於增加的熱量加上環境對該系統所作的功。若該系統周圍的牆不能傳遞物質與能量,則該系統稱之為「孤立系統」,且其內能會維持定值。 一系統內給定狀態下的內能不能被直接量測。給定狀態下的內能可由一已給定其內能參考值之參考狀態開始,經過一連串及熱力學過程,以達到該給定狀態來決定其值。這一連串的操作及過程,理論上可使用該系統的某些外延狀態變數來描述,亦即該系統的熵 S、容量 V 及莫耳數 。內能 是這些變數的函數。有時,該函數還能再附加上其他的外延狀態變數,如電偶極矩。就熱力學及工程學上的實際用途來看,一般很少需要考慮一個系統的所有內含能量,如質量所含有的等價能量。一般而言,只有與研究的系統及程序有關的部分才會被包含進來。熱力學一般只在意內能的「變化量」。 內能是一系統內的狀態函數,因為其值僅取決於該系統的目前狀態,而與達到此一狀態所採之途徑或過程無關。內能是個外延物理量。內能是個基本熱動力位能。使用勒壤得轉換,可從內能開始,在數學上建構出其他的熱動力位能。這些函數的狀態變數,部分外延變數會被其共軛內含變數所取代。因為僅是將外延變數由內含變數所取代並無法得出其他熱動力位能,所以勒壤得轉換是必要的。熱力學系統的另一個基本狀態函數為該系統的熵 ,是個除熵 S 這個狀態變數被內能 U 所取代外,具有相同狀態變數之狀態函數。 雖然內能是個宏觀物理量,內能也可在微觀層面上由兩個假設的量來解釋。一個是系統內粒子的微觀運動(平移、旋轉、振動)所產生的微觀動能。另一個是與粒子間的化學鍵及組成物質的靜止質量能量等微觀力有關之位能。在微觀的量與系統因作功、加熱或物質轉移而產生之能量增損的量之間,並不存在一個簡單的普遍關係。 能量的國際單位為焦耳(J)。有時使用單位質量(公斤)的內能(稱之為「比內能」)會比較方便。比內能的國際單位為 J/kg。若比內能以物質數量(莫耳)的單位來表示,則稱之為「莫耳內能」,且該單位為 J/mol。 從統計力學的觀點來看,內能等於系統總能量的。.

查看 化學能和内能

光合作用

光合作用是植物、藻類等生產者和某些細菌,利用光能把二氧化碳、水或硫化氢變成碳水化合物。可分为產氧光合作用和不產氧光合作用。 植物之所以称为食物链的生产者,是因为它们能够透过光合作用利用无机物生产有机物并且贮存能量,其能量轉換效率約為6%。通过食用,食物链的消费者可以吸收到植物所贮存的能量,效率为10%左右。對大多數生物來説,這個過程是賴以生存的關鍵。而地球上的碳氧循环,光合作用是其中最重要的一环。.

查看 化學能和光合作用

电能

电能(Electrical energy),是指电以各种形式做功(即產生能量)的能力。电能被广泛应用在动力、照明、冶金、化学、纺织、通信、广播等各个领域,是科学技术发展、国民经济飞跃的主要动力。.

查看 化學能和电能

电池

电池,一般狹義上的定義是將本身儲存的化學能轉成電能的裝置,廣義的定義為將預先儲存起的能量轉化為可供外用電能的裝置。因此,像太陽能電池只有轉化而無儲存功能的裝置不算是電池。其他名稱有電瓶、電芯,而中文池及瓶也有儲存作用之意。 英文中,單一個電池結構叫做「Cell」(單電池),內部有多個Cell並連或串連的結構叫做「Battery Cell」(電池組)。市售一般乾電池其實構造上是「Cell」但英文上習慣稱「Battery」,汽車用鉛酸電池與方形9V電池則是真正的「Battery」。.

查看 化學能和电池

燃烧

燃燒是物體快速氧化,產生光和熱的過程。 燃烧的本质是氧化还原反应。广义燃烧不一定要有氧气参加,任何发光、发热、剧烈的氧化还原反应,都可以叫燃烧。 燃燒需要三種要素並存才能發生,分別是可燃物如燃料、助燃物如氧氣、以及溫度要達到燃点。燃燒三要素並稱為火三角。助燃物是燃燒反應中的氧化劑,氧氣是燃燒反應中最常見的助燃物,但其他化合物也可能是助燃物,例如鎂帶可以在二氧化碳中燃燒,此時二氧化碳即為助燃物。 在一個完整的燃燒反應中,一物質和氧化劑(如氧氣、氟氣)反應,其生成物為燃料的各元素氧化反應後的產物。例如: 然而在真實情況下不可能達到完整的燃燒反應。當燃燒反應達到化學平衡時,會產生多種主要和次要產物;例如燃燒碳時會產生一氧化碳和煤煙。此外,在大氣中發生燃燒反應時,因為大氣中含有78%的氮氣的緣故,會產生各式各樣的氮氧化物和氮化物。.

查看 化學能和燃烧

(Coal)是一种可燃的黑色或棕黑色沉积岩,这样的沉积岩通常是发生在被称为煤床或煤层的岩石地层中或矿脉中。因为后来暴露于升高的温度和压力下,较硬的形式的煤可以被认为是变质岩,例如无烟煤。煤主要是由碳构成,连同由不同数量的其它元素构成,主要是氢,硫,氧和氮。 在历史上,煤被用作能源资源,主要是燃烧用于生产电力和/或热,并且也可用于工业用途,例如精炼金属,或生产化肥和许多化工产品。作为一种化石燃料,煤的形成是古代植物在腐敗分解之前就被埋在地底,转化成泥炭,然后转化成褐煤,然后为次烟煤,之后烟煤,最后是无烟煤。煤產生之碳氫化合物经过地壳运动空气的压力和温度条件下作用,产生的碳化化石矿物,亦即,煤炭就是植物化石。这涉及了很长时期的生物和地质过程。.

查看 化學能和煤

能量

在物理學中,能量(古希臘語中 ἐνέργεια energeia 意指「活動、操作」)是一個間接觀察到的物理量。它往往被視為某一個物理系統對其他的物理系統做功的能力。由於功被定義為力作用一段距離,因此能量總是等同於沿著一定的長度阻擋某作用力的能力。 一個物體所含的總能量奠基於其質量,能量如同質量一般,不會無中生有或無故消失。能量就像質量一樣,是一個純量。在國際單位制(SI)中,能量的單位是焦耳,但是在有些領域中會習慣使用其他單位如千瓦·時和千卡,這些也是功的單位。 A系統可以藉由簡單的物質轉移將能量傳輸到B系統(因為物質的質量等效於能量)。然而,如果能量不是藉由物質轉移而傳輸能量,而是由其他方法轉移能量,將會使B系統產生變化,因為A系統對B系統作了功。這功表現的效果如同於一個力沿一定的距離作用在接收能量的系統裡。舉例來說,A系統可以藉由轉移(輻射)電磁能量到B系統,而這會在吸收輻射能量的粒子上產生力。同樣的,一個系統可能藉由碰撞轉移能量,而這種情況下被碰撞的物體會在一段距離內受力並獲得運動的能量,稱為動能。熱可以藉由輻射能轉移,或者直接藉由系統間粒子的碰撞而以微觀粒子之動能的形式傳遞。 能量可以不表現為物質、動能或是電磁能的方式儲存在一個系統中。當粒子在與其有交互作用的力場中受外力移動一段距離,此粒子移動到這個場的新位置所需的能量便如此的被儲存了。當然粒子必須藉由外力才能保持在新位置上,否則其所處在的場會藉由釋放儲存能量的方式,讓粒子回到原來的狀態。這種藉由粒子在力場中改變位置而儲存的能量就稱為位能。一個簡單的例子就是在重力場中往上提升一個物體到某一高度所需要做的功就是位能。 任何形式的能量可以轉換成另一種形式。舉例來說,當物體在力場中,因力場作用而移動時,位能可以轉化成動能。當能量是屬於非熱能的形式時,它轉化成其他種類能量的效率可以很高甚至達百分之百,如沿光滑斜面下滑的物體,或者新物質粒子的產生。然而如果以熱能的形式存在,則在轉換成另一種型態時,就如同熱力學第二定律所描述的,總會有轉換效率的限制。 在所有能量轉換的過程中,總能量保持不變,原因在於總系統的能量是在各系統間做轉移,當某個系統損失能量,必定會有另一個系統得到這損失的能量,導致失去和獲得達成平衡,所以總能量不改變。這個能量守恆定律,是十九世紀初時提出,並應用於任何一個孤立系統。(其後雖有質能轉換方程式的發現,但根據該方程式,亦可以把質量視為能量的另一存在形式,所以此定律可說依舊成立)根據諾特定理,能量守恆是由於物理定律不會隨時間改變而得到的自然結果。 雖然一個系統的總能量,不會隨著時間改變,但其能量的值,可能會因為參考系而有所不同。例如一個坐在飛機裡的乘客,相對於飛機其動能為零;但是相對於地球來說,動能卻不為零。.

查看 化學能和能量

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

查看 化學能和氧

另见

化学能