我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

利特尔-帕克斯效应

指数 利特尔-帕克斯效应

利特尔-帕克斯效应(Little–Parks effect),或利特尔-帕克斯实验,是由威廉·A·利特尔和罗兰·D·帕克斯于1962年完成的一个超导实验W.

目录

  1. 21 关系: 基本电荷埃格斯特朗庫柏對弗里茨·伦敦BCS理论磁場磁阻效应磁通量磁通量量子第一类超导体第二类超导体电阻超导现象量子化金兹堡-朗道方程週期查爾斯·基泰爾水泥振荡

  2. 超导

基本电荷

基本电荷(符号:e,也称元电荷),是一个质子所带的电荷,或一个电子所带的负电荷的量。它是一个基本物理常数,是原子单位和一些其它自然单位制中的电荷单位。 根据国际科学技术数据委员会所公布,基本电荷的值大约为 在高斯單位制中,它的值为 自从1909年罗伯特·密立根的油滴实验中测量出基本电荷后,人们便认为它不可再分了。1960年发现了夸克,它们的电荷为1⁄3 e和2⁄3 e,所以把“基本电荷”用来指电子的电荷便不完全正确了;然而单独的夸克至今没有探测到,都是两个以上的夸克聚集在一起,使得总电荷为基本电荷的整数倍。.

查看 利特尔-帕克斯效应和基本电荷

埃格斯特朗

埃格斯特朗(Ångström, 简称埃,符号Å)是一个长度计量单位。它不是国际制单位,但是可与国际制单位进行换算,即1 Å.

查看 利特尔-帕克斯效应和埃格斯特朗

庫柏對

庫柏對(Cooper pair)是指電子結合在一起的狀態。一般來說,電子之間都有微小的--,由此使得電子的能量低於費米能時,電子就會結合在一起,这一能量降低大约是1meV的量级,一般的溫度对应热运动能量相对很大,因此庫柏對的現象通常要在低温下超導狀態才會出現。庫柏對這個概念是的基礎是由BCS理論建立,而這個理論是約翰·巴丁、利昂·庫珀和約翰·施里弗這三人提出的,這也讓他們三個人得到諾貝爾獎。.

查看 利特尔-帕克斯效应和庫柏對

弗里茨·伦敦

弗里茨·沃尔夫冈·伦敦(Fritz Wolfgang London,),犹太裔德国物理学家,杜克大学教授。 他对化学键理论和对分子间作用力(伦敦色散力)的根本性的贡献如今已经写入了物理化学的标准教材。他和兄弟海因茨·伦敦对理解超导体的电磁性质做出了巨大贡献,提出了伦敦方程。他曾五个独立的场合被提名诺贝尔化学奖。.

查看 利特尔-帕克斯效应和弗里茨·伦敦

BCS理论

BCS理论是解释常规超导体的超导电性的微观理论(所以也常意译为超导的微观理论)。该理论以其发明者约翰·巴丁、利昂·库珀和约翰·施里弗的名字首字母命名。.

查看 利特尔-帕克斯效应和BCS理论

磁場

在電磁學裡,磁石、磁鐵、電流及含時電場,都會產生磁場。處於磁場中的磁性物質或電流,會因為磁場的作用而感受到磁力,因而顯示出磁場的存在。磁場是一種向量場;磁場在空間裡的任意位置都具有方向和數值大小更精確地分類,磁場是一種贗矢量。力矩和角速度也是準向量。當坐標被反演時,準向量會保持不變。。 磁鐵與磁鐵之間,通過各自產生的磁場,互相施加作用力和力矩於對方。運動中的電荷亦會產生磁場。磁性物質產生的磁場可以用電荷運動模型來解釋基本粒子,像電子或正子等等,會產生自己內有的磁場,這是一種相對論性效應,並不是因為粒子運動而產生的。但是,對於大多數狀況,這磁場可以模想為是由粒子所載有的電荷因為旋轉運動而產生的。因此,這相對論性效應稱為自旋。磁鐵產生的磁場主要是由內部未配對電子的自旋形成的。。 當施加外磁場於物質時,磁性物質的內部會被磁化,會出現很多微小的磁偶極子。磁化強度估量物質被磁化的程度。知道磁性物質的磁化強度,就可以計算出磁性物質本身產生的磁場。產生磁場需要輸入能量,當磁場被湮滅時,這能量可以再回收利用,因此,這能量被視為儲存於磁場。 電場是由電荷產生的。電場與磁場有密切的關係;含時磁場會生成電場,含時電場會生成磁場。馬克士威方程組描述電場、磁場、產生這些向量場的電流和電荷,這些物理量之間的詳細關係。根據狹義相對論,電場和磁場是電磁場的兩面。設定兩個參考系A和B,相對於參考系A,參考系B以有限速度移動。從參考系A觀察為靜止電荷產生的純電場,在參考系B觀察則成為移動中的電荷所產生的電場和磁場。 在量子力學裏,科學家認為,純磁場(和純電場)是虛光子所造成的效應。以標準模型的術語來表達,光子是所有電磁作用的顯現所依賴的媒介。對於大多數案例,不需要這樣微觀的描述,在本文章內陳述的簡單經典理論就足足有餘了;在低場能量狀況,其中的差別是可以忽略的。 在古今社會裡,很多對世界文明有重大貢獻的發明都涉及到磁場的概念。地球能夠產生自己的磁場,這在導航方面非常重要,因為指南針的指北極準確地指向位置在地球的地理北極附近的地磁北極。電動機和發電機的運作機制是倚賴磁鐵轉動使得磁場隨著時間而改變。通過霍爾效應,可以給出物質的帶電粒子的性質。磁路學專門研討,各種各樣像變壓器一類的電子元件,其內部磁場的相互作用。.

查看 利特尔-帕克斯效应和磁場

磁阻效应

磁阻效應(Magnetoresistance,簡稱MR)是指材料之電阻隨著外加磁場的變化而改變的效應,其物理量的定義,是在有無磁場下的電阻差除上原先電阻,用以代表電阻變化率。有多種可以稱為磁阻的效應:一些發生在大量非磁性金屬和半導體中,例如幾何磁阻,Shubnikov de Haas振盪或金屬中常見的正磁阻 。其他的效應發生在磁性金屬中,例如鐵磁體中的負磁阻或各向異性磁阻(AMR)。.

查看 利特尔-帕克斯效应和磁阻效应

磁通量

磁通量,符號為 \Phi_B,是通過某给定曲面的磁場(亦称为磁通量密度)的大小的度量。磁通量的国际单位制單位是韦伯。.

查看 利特尔-帕克斯效应和磁通量

磁通量量子

磁通量量子(Magnetic flux quantum)是指磁通量的最小單位,通常以Φ0為符號,其值等於h/2e(約為2.067 833 758×10−15 Wb),是物理常數。 與磁通量量子相關或是同義的單字包括:「flux quanta」、「fluxoid」、「fluxon」。.

查看 利特尔-帕克斯效应和磁通量量子

第一类超导体

由于迈斯纳效应的存在,磁场无法轻易穿过超导体。但当外加磁场达到一定强度时,磁场可以破坏超导态。就超导态被破坏的方式而言,超导体可以分为两类。第一类超导体中,一旦外加磁场突破临界磁场Hc,将发生一级相变,超导态突然消失。这样的超导态往往存在于纯金属超导体,例如铝、铅和汞中。目前已知唯一的合金材料的第一类超导体是 TaSi2。由于退磁因子的存在,材料可能会进入一种宏观上由普通态区域和超导态区域混合的中间状态。简单的说,由于物体形状对于外加磁场的影响,某些区域的磁场可能强于另一些区域的磁场,从而使得材料部分区域脱离超导态。这一现象最早由朗道描述。 临界磁场Hc也受温度T影响,Hc随着温度升高而逐渐减小,当温度升到临界温度Tc时,临界磁场Hc变为0。Hc(T)有以下关系: H_c(T).

查看 利特尔-帕克斯效应和第一类超导体

第二类超导体

根据对外加磁场的不同响应情况,超导体被分为第一类超导体和第二类超导体。超导体只有在外界温度低于其超导临界温度Tc以及外界磁场强度低于其超导临界磁场Hc是才处于超导状态,当温度T>Tc或者磁场H>Hc时,超导态就会被破坏,超导体就和普通导体一样,失去了零电阻以及完全抗磁性(迈斯纳效应)的特性。.

查看 利特尔-帕克斯效应和第二类超导体

电阻

在電磁學裏,電阻是一個物體對於電流通過的阻礙能力,以方程式定義為 其中,R為電阻,V為物體兩端的電壓,I為通過物體的電流。 假設這物體具有均勻截面面積,則其電阻與電阻率、長度成正比,與截面面積成反比。 採用國際單位制,電阻的單位為歐姆(Ω,Ohm)。電阻的倒數為電導,單位為西門子(S)。 假設溫度不變,則很多種物質會遵守歐姆定律,即這些物質所組成的物體,其電阻為常數,不跟電流或電壓有關。稱這些物質為「歐姆物質」;不遵守歐姆定律的物質為「非歐姆物質」。 電路符號常常用R來表示,例: R1、R02、R100等。.

查看 利特尔-帕克斯效应和电阻

超导现象

超导现象是指材料在低于某一温度时,电阻变为零的现象,而这一温度称为超导转变温度(Tc)。超导现象的特征是零电阻和完全抗磁性。.

查看 利特尔-帕克斯效应和超导现象

锡是一种化学元素,其化学符号是Sn(拉丁语Stannum的缩写),它的原子序数是50。它是一种主族金属。纯的锡有银灰色的金属光泽,它拥有良好的伸展性能,它在空气中不易氧化,它的多种合金有防腐蚀的性能,因此它常被用来作为其它金属的防腐层。锡的主要来源是它的一种氧化物矿物锡石(SnO2),盛產於中國雲南、馬來西亞等地。.

查看 利特尔-帕克斯效应和锡

量子化

在物理學裏,量子化是一種從經典場論建構出量子場論的程序。使用這程序,時常可以直接地將經典力學裏的理論量身打造成嶄新的量子力學理論。物理學家所談到的場量子化,指的就是電磁場的量子化。在這裡,他們會將光子分類為一種場量子(例如,稱呼光子為光量子)。對於粒子物理學,核子物理學,固態物理學和量子光學等等學術領域內的理論,量子化是它們的基礎程序。.

查看 利特尔-帕克斯效应和量子化

金(gold)是化学元素,化学符号Au(来自aurum),原子序数79。纯金是有明亮光泽、黄中带红、柔软、密度高、有延展性的金属。金在元素周期表中在11族,属过渡金属,是化学性质最不活泼的几种元素之一。金在标准状况下是固体,在自然界中常以游离态单质形式(自然金)存在,如岩石、地下及沖積層中堆积的砂金或金粒。金能和游离态的银形成固溶体琥珀金,在自然界中也能和铜、钯形成合金。矿物中的金化合物不太常见,主要是碲化金。 金的原子序数在宇宙中天然存在的元素中是较高的。据信这种重元素是在两颗中子星碰撞时的超新星核合成中产生,在太阳系形成前的尘埃中就已存在。由于地球形成之初还处于熔化状态,的金几乎都已沉入地核。因此,现在地球上地壳和地幔的金多是拜后来后期重轰炸期(约40亿年前)的小行星撞击事件所赐。 金能抵抗单一酸的侵蚀,但却能被王水溶解(“王水”因此得名)。这种混合酸能和金反应生成四氯合金酸根离子。金也能溶于碱性氰化物溶液,这是其开采和电镀的原理。能夠溶解銀及卑金屬的硝酸不能溶解金,这些性質是黃金精煉技術的基础,也是用硝酸来鉴别物品裡是否含有金的原理,这一方法是英語諺語「acid test」的語源,意指用「測試黃金的標準」来測試目標物是否名副其實。此外,金能溶于水銀,形成汞齊(也是一种合金),但这并非化学反應。 金在有历史记载以前就是一種廣受歡迎的貴金屬,用于貨幣、保值物、珠寶和艺术品。以前国内和国际通常实行以金为基础的金本位货币制度,但1930年代时金币已停止流通。70年代,随着布雷頓森林協定的结束,世界范围内的金本位制终于让位给法定货币制度。不过因其稀有,易于熔炼、加工和铸币,色泽独特,抗腐蚀,不易和其他物质反应等特点,金的价值不减。 底,人类总共开采18.36万公噸(相当于9513立方米)的金。 产量中的50%用于珠宝,40%用于投资,还有10%用于工业。 因其高延展性,抗腐蚀性,在大多数反应中的惰性和导电性,金一直在各类电子设备中用作耐腐蚀的电子连接器,这是它的主要工业用途。此外它还用于屏蔽红外线,生产和金箔,以及修补牙齿。有些金盐在医学上仍作为消炎药使用。.

查看 利特尔-帕克斯效应和金

金兹堡-朗道方程

金兹堡-朗道方程,或金兹堡-朗道理论,是由维塔利·金兹堡和列夫·朗道在1950年提出的一个描述超导现象的理论。早期的金兹堡-朗道方程只是一个唯象的数学模型,从宏观的角度描述了第一类超导体。1957年,苏联物理学家阿列克谢·阿布里科索夫基于金兹堡-朗道理论提出了第二类超导体的概念。1959年,结合BCS理论,从微观角度严格证明了金兹堡-朗道理论是BCS理论的一种极限情况。为了表彰金兹堡和阿布里科索夫对超导理论的贡献,他们与研究超流理论的安东尼·莱格特共同获得了2003年的诺贝尔物理学奖。.

查看 利特尔-帕克斯效应和金兹堡-朗道方程

週期

週期(Period)指的是完成往復運動一次所需的時間,物理學上通常以T表示,單位為s。 週期為頻率(物理學上通常以\,f\,表示)的倒數:T.

查看 利特尔-帕克斯效应和週期

查爾斯·基泰爾

查爾斯·基泰爾(Charles Kittel,),美國物理學家,曾任加州大學柏克萊分校教授,現為該校榮譽退休教授。.

查看 利特尔-帕克斯效应和查爾斯·基泰爾

水泥

水泥是一種建築材料,與水混合後會凝固硬化。水泥不常單獨使用,而是用來與沙、礫(骨料)接合。水泥與細緻的骨料混合後形成砂漿(用來接合磚塊),水泥與沙礫混合後形成混凝土。 水泥通常是無機的,主原料為石灰或矽酸鈣。 水泥的種類繁多,按其礦物组成分為硅酸盐水泥、铝酸盐水泥、硫鋁酸盐水泥、氟铝酸盐水泥、铁铝酸盐水泥以及少熟料或无熟料水泥等。而按其用途和性能又分为通用水泥、专用水泥和特种水泥三大类。 在每一品种的水泥中,又根据其胶结强度的大小,而分为若干强度等级。不同的水泥品种及强度等级,其性能也有较大差异。.

查看 利特尔-帕克斯效应和水泥

振荡

振荡(oscillation)指某一可观测量的值关于中心值(常为平衡点)往复变化,或可观测量在两个态或多个态之间往复变化,常指随时间的变化。常见的例子是单摆和交流电。振荡也常称作振动,虽然二者作为同义词交叉使用,但振动常指机械振荡。振荡不仅仅出现在物理系统中,也會出现在生物系统中,包括人类社会和大脑。 通过周期性的状态改变,系统按照固定的时间微分重复变化的末态。总的来说:振荡是一个与时间相关的物理状态参数。 这样来说,对于力学、电学或者液体状态量有:.

查看 利特尔-帕克斯效应和振荡

另见

超导

亦称为 利特爾帕克斯實驗。