徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

初等群論

指数 初等群論

在數學中,群 定義為集合 G 和叫做“乘積”并指示為中綴 "*" 的 G 上的二元運算。乘積服從下列規則(也叫做公理)。設 a, b 和 c 是 G 的任意元素。則.

22 关系: 子群子集实数中綴交換律二元运算循環群單位元公理结合律群的生成集合群论階 (群論)阿贝尔群闭包 (数学)集合逆元素陪集数学整数拉格朗日定理 (群論)

子群

假設(G, *)是一個群,若 H 是 G 的一個非空子集且同時 H 與相同的二元運算 * 亦構成一個群,則 (H, *) 稱為 (G, *) 的一個子群。參閱群論。 更精確地來說,若運算*在H的限制也是個在H上的群運算,则称H為G的子群。 一個群G的純子群是指一個子群H,其為G的純子集(即H ≠ G)。任一個群的當然群為只包含單位元素的子群。若H為G的子群,則G有時會被稱為H的「母群」。 相同的定義可以應用在更廣義的範圍內,當G為一任意的半群,但此一條目中只處理群的子群而已。群G有時會被標記成有序對(G,*),通常用以強調其運算*當G帶有多重的代數或其他結構。 在下面的文章中,會使用省略掉*的常規,並將乘積a*b寫成ab。.

新!!: 初等群論和子群 · 查看更多 »

子集

子集,為某個集合中一部分的集合,故亦稱部分集合。 若A和B为集合,且A的所有元素都是B的元素,则有:.

新!!: 初等群論和子集 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

新!!: 初等群論和实数 · 查看更多 »

中綴

中綴(infix、接中辭)是一種置入在一詞幹(現有字詞)裡的詞綴。它對比於"外綴(adfix)",而"外綴"是一種較罕見的術語表示連接到詞幹外圍的詞綴,比如前綴或後綴等詞綴。 當標記文字置於行間註記(interlinear gloss)時,大部分的詞綴之間用一個连字号(hyphen)隔開,不過中綴是用〈角括號〉隔開。.

新!!: 初等群論和中綴 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

新!!: 初等群論和交換律 · 查看更多 »

二元运算

二元运算属于数学运算的一种。二元运算需要三个元素:二元运算符以及该运算符作用的两个变量。如四则运算的加、减、乘、除均属于二元运算。 如在运算1 + 2之中,二元运算符为“+”,而该运算符作用的操作数分别为1与2。 二元运算只是二元函数的一种,由于它被广泛应用于各个领域,因此受到比其它函数更高的重视。.

新!!: 初等群論和二元运算 · 查看更多 »

循環群

在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循环群同构于整数同余加法群 Z/nZ,无限循环群则同构于整数加法群。每個循環群都是阿贝尔群,亦即其運算是可交換的。在群论中,循环群的性质已经被研究的较为透彻,是更为复杂的代数研究中常用到的基础工具。.

新!!: 初等群論和循環群 · 查看更多 »

單位元

單位元是集合裏的一種特別的元素,與該集合裏的二元運算有關。當單位元和其他元素結合時,並不會改變那些元素。單位元被使用在群和其他相關概念之中。 設 (S,*)為一帶有一二元運算* 的集合S(稱之為原群),則S內的一元素e被稱為左單位元若對所有在S內的a而言,e * a .

新!!: 初等群論和單位元 · 查看更多 »

公理

在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b.

新!!: 初等群論和公理 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

新!!: 初等群論和结合律 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 初等群論和群 · 查看更多 »

群的生成集合

在抽象代數中,群 G 的生成集合是子集 S 使得所有 G 的所有元素都可以表達為 S 的元素和它們的逆元中的有限多個元素的乘積。 更一般的說,如果 S 是群 G 的子集,則 S 所生成的子群 是包含所有 S 的元素的 G 的最小子群,這意味著它是包含 S 元素的所有子群的交集;等價的說, 是可以用 S 的元素和它們的逆元中的有限多個元素的乘積表達的 G 的所有元素的子群。 如果 G.

新!!: 初等群論和群的生成集合 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 初等群論和群论 · 查看更多 »

階 (群論)

在群論這一數學的分支裡,階這一詞被使用在兩個相關連的意義上:.

新!!: 初等群論和階 (群論) · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 初等群論和阿贝尔群 · 查看更多 »

闭包 (数学)

数学中,若对某个集合的成员进行一種运算,生成的仍然是这个集合的成员,则该集合被称为在這个运算下闭合。 例如,实数在减法下闭合,但自然数不行:自然数 3 和 7 的减法 3 − 7 的结果不是自然数。 类似的,一个集合被称为在某些运算的搜集下闭合,如果它在每个运算之下都闭合。 一个集合在某个运算或某些运算的搜集下闭合被称为满足闭包性质。闭包性质经常作为公理,通常叫做闭包公理。现代集合论通常这样定义:运算为在集合间的映射。所以向一个结构增加闭包性質作为公理是多余的,尽管它对于子集是否闭合的问题仍有意义。 当一个集合 S 在某个运算下不闭合的时候,我们通常可以找到包含 S 的最小的闭合集合。这个最小闭合集合被称为 S 的(关于这个运算的)闭包。例如,若把自然数集看作实数集的子集,它在减法下的闭包就是整数集。一个重要的例子是拓扑闭包。闭包的概念推广为伽罗瓦连接,进一步为。 注意集合 S 必须是闭合集合的子集,這樣才能定义闭包算子。在前面的例子中,实数在减法下闭合是重要的,减法不总是在自然数的定义域中有定义的。 闭包这个词的两种用法不应混淆。前者用来提及闭合的性质,而后者提及包含不闭合集合的最小闭合集合。简要的说,一个集合的闭包满足闭包性质。.

新!!: 初等群論和闭包 (数学) · 查看更多 »

集合

集合可以指:.

新!!: 初等群論和集合 · 查看更多 »

逆元素

數學中,逆元素(Inverse element)推廣了加法中的加法逆元和乘法中的倒數。直觀地說,它是一個可以取消另一給定元素運算的元素。.

新!!: 初等群論和逆元素 · 查看更多 »

陪集

数学上,若G为群,H为其子群,而g为G中元素,则 仅当H为正规子群时,左右陪集相同,这也是子群正规性的一个定义。 陪集指某个G中子群的左或右陪集。因为Hg.

新!!: 初等群論和陪集 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 初等群論和数学 · 查看更多 »

整数

整数,是序列中所有的数的统称,包括负整数、零(0)与正整数。和自然數一樣,整數也是一個可數的無限集合。這個集合在数学上通常表示粗體Z或\mathbb,源于德语单词Zahlen(意为“数”)的首字母。 在代數數論中,這些屬於有理數的一般整數會被稱為有理整數,用以和高斯整數等的概念加以區分。.

新!!: 初等群論和整数 · 查看更多 »

拉格朗日定理 (群論)

拉格朗日定理是群論的定理,利用陪集證明了子群的階一定是有限群的階的因數值。.

新!!: 初等群論和拉格朗日定理 (群論) · 查看更多 »

重定向到这里:

基礎群論

传出传入
嘿!我们在Facebook上吧! »