目录
偏微分方程
偏微分方程(partial differential equation,缩写作PDE)指含有未知函数及其偏导数的方程。描述自变量、未知函數及其偏导數之間的關係。符合這個關係的函数是方程的解。 偏微分方程分為線性偏微分方程式與非線性偏微分方程式,常常有幾個解而且涉及額外的邊界條件。.
单射
在數學裡,單射函數(或稱嵌射函數,國家教育研究院雙語詞彙、學術名詞暨辭書資訊網、一對一函數,英文稱 injection、injective function或 one-to-one function)為一函數,其將不同的輸入值對應到不同的函數值上。更精確地說,函數f被稱為是單射的,當對每一陪域內的y,存在至多一個定義域內的x使得f(x).
查看 分佈式參數系統和单射
可觀察性
#重定向 可觀測性.
查看 分佈式參數系統和可觀察性
可控制性
可控制性(Controllability)是中的重要特性,在許多控制問題中都很重要,例如是否可以透過回授穩定一個本身不穩定的系統,或是最佳控制的相關問題。 可控制性及可觀測性是同一個問題上的对偶概念。 簡單來說,可控制性是指是否可以透過一些允許的程序讓系統調整到其組態空間內的任何一個組態。隨著其系統模型或是框架的不同,定義也會略有改變。 以下是一些在系統或是控制文獻中出現過的可控制性定義:.
查看 分佈式參數系統和可控制性
向量空间的维数
数学中, 向量空间 V 的维数是 V 的基底的势或基数.
希尔伯特空间
在数学裡,希尔伯特空间即完备的内积空间,也就是說一個帶有內積的完備向量空間。是有限维欧几里得空间的一个推广,使之不局限于實數的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念(及由此引申而来的正交性与垂直性的概念)。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列會收敛到此空間裡的一點,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公設化数学和量子力学的关键性概念之一。.
状态空间
态空间是控制工程中的一個名詞。状态是指在系统中可决定系统状态、最小数目变量的有序集合。而所谓状态空间则是指该系统全部可能状态的集合。簡單來說,状态空间可以視為一個以狀態變數為座標軸的空間,因此系統的狀態可以表示為此空間中的一個向量。 状态空间表示法即為一種將物理系統表示為一組輸入、輸出及狀態的數學模式,而輸入、輸出及狀態之間的關係可用許多一階微分方程來描述。 為了使數學模式不受輸入、輸出及狀態的個數所影響,輸入、輸出及狀態都會以向量的形式表示,而微分方程(若是線性非時變系統,可將微分方程轉變為代數方程)則會以矩陣的形式來來表示。 状态空间表示法提供一種方便簡捷的方法來針對多輸入、多輸出的系統進行分析並建立模型。一般頻域的系統處理方式需限制在常係數,啟始條件為0的系統。而状态空间表示法對系統的係數及啟始條件沒有限制。.
查看 分佈式參數系統和状态空间
系統
系統(system;system;système;sistema)泛指由一群有關聯的個體組成,根據某種規則運作,能完成個別元件不能單獨完成的工作的群體。 系統分為自然系統與人為系統兩大類。.
查看 分佈式參數系統和系統
線性系統
線性系統是一數學模型,是指用線性運算子組成的系統。相較於非線性系統,線性系統的特性比較簡單。例如以下的系統即為一線性系統: 由於線性系統較容易處理,許多時候會將系統理想化或簡化為線性系統。線性系統常應用在自動控制理論、信號處理及電信上。像無線通訊訊號在介質中的傳播就可以用線性系統來模擬。 線性系統需滿足線性的特性,若線性系統還滿足非時變性(即系統的輸入信號若延遲τ秒,那麼得到的輸出除了這τ秒延時以外是完全相同的),則稱為線性時不變系統。.
查看 分佈式參數系統和線性系統
集總電路
集總電路(Lumped circuit)是由許多由電源、電阻、電容、電感等集總元件( Lumped element) 所組成之電路。 在電路理想化的電路模型分析,各點之間的信號是瞬間傳遞的,電路元件的所有電流過程都集中於在元件內部空間的各個點上,此為集總電路之特性。 每個集總元件基本現象時可用數學方式表示,並建立多種實際元件的理想模型。而電阻、電容、電感、電壓源和電流源都只是儲存或消耗電能磁場的元件,因此都視為集總元件,而且因為只有兩個端口,所以也稱之為二端元件(或者單口元件),除此之外,集總電路還需要理想變壓器、耦合電感、受控源等四端元件(雙口元件)。.
查看 分佈式參數系統和集總電路
Z轉換
在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.
查看 分佈式參數系統和Z轉換
控制理论
控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.
查看 分佈式參數系統和控制理论
无界算子
在数学中, 特别是泛函分析与算符理论, 无界算子的概念提供了用于处理微分算符, 量子力学中无界可观测量等的一个抽象框架.
查看 分佈式參數系統和无界算子
时不变系统
非時變系統是输出不會直接隨著时间变化的系统。 如果系统的传递函数不是时间的函数,就可以满足这个特性。这个特性也可以用示意图的术语进行描述.
时滞微分方程
在数学领域中, 时滞微分方程, 或延时微分方程 (DDE) 是一类微分方程, 其中未知函数的在确定时刻的导数由先前时刻函数所决定.
拉普拉斯变换
拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.
亦称为 分布参量系统。