徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

控制理论

指数 控制理论

控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.

117 关系: AIM-9響尾蛇飛彈动力系统动态系统理论升力反馈可编程逻辑控制器可觀測性可控制性发送器向量空间的维数向量控制太空競賽奈奎斯特图奈奎斯特稳定判据安定時間安德雷·柯爾莫哥洛夫巡航定速工程学庞特里亚金最大化原理亞歷山大·李亞普諾夫亨德里克·韋德·波德人工神经网络微分方程信号流图心理学化油器分佈式參數系統哈里·奈奎斯特冲激响应函数共形映射剑桥大学回授線性化皮埃尔-西蒙·拉普拉斯犯罪學状态空间火控系统理查德·貝爾曼社会学積分器積分終結穩定多項式穩定性第二次世界大战節流閥系统科学純量網絡化控制系統線性系統線性關係...线性时不变系统理论经济学维纳滤波無差拍控制狀態目標值莱特兄弟遗传算法鍵結圖非線性系統頻域詹姆斯·克拉克·麦克斯韦諾伯特·維納试错鲁棒控制负反馈放大器贝叶斯概率超前-滞后补偿器过冲 (信号)过程控制进化计算范数能量成型控制航天航空器阿道夫·霍维茨起停式控制開迴路控制器自动化技术自适应控制自激振荡自我組織自整定離心式調速器電阻溫度計H infinity迴路函數整形H-infinity控制MIMOPID控制器Z轉換极点 (复分析)控制工程控制器控制论李雅普诺夫稳定性根軌跡圖概率论模型預測控制模式預測控制模糊逻辑樹 (資料結構)正向系統比例控制波德圖滑動模式控制机器学习机器人学机翼有界輸入有界輸出穩定性最优控制方塊圖时不变系统时标微积分数学數位控制拉普拉斯变换智能控制 扩展索引 (67 更多) »

AIM-9響尾蛇飛彈

美國三軍通用編號AIM-9響尾蛇(Sidewinder)空對空飛彈是全世界第一款實用化的空對空飛彈,第一款以紅外線作為導引設計,也是第一款有擊落目標紀錄的空對空飛彈。 響尾蛇飛彈是美國海軍空用武器中心所研發,使用單位遍及美國四大軍種,外銷數量與使用國家眾多,對現役所有的紅外線導引空對空飛彈的基本設計概念都有深厚的影響,蘇聯的第一款紅外線導引空對空飛彈-K-13(北約代號AA-2環礁)實際上是仿造響尾蛇而來,苏联设计人员對設計小組的巧思也讚賞不已。.

新!!: 控制理论和AIM-9響尾蛇飛彈 · 查看更多 »

动力系统

动态系统(dynamical system)是数学上的一个概念。動態系统是一种固定的规则,它描述一个给定空间(如某个物理系统的状态空间)中所有点随时间的变化情况。例如描述钟摆晃动、管道中水的流动,或者湖中每年春季鱼类的数量,凡此等等的数学模型都是動態系统。 在動態系统中有所谓状态的概念,状态是一组可以被确定下来的实数。状态的微小变动对应这组实数的微小变动。这组实数也是一种流形的几何空间坐标。動態系统的演化规则是一组函数的固定规则,它描述未来状态如何依赖于当前状态的。这种规则是确定性的,即对于给定的时间间隔內,从现在的状态只能演化出一个未来的状态。 若只是在一系列不连续的时间点考察系统的状态,则这个動態系统为离散動態系统;若时间连续,就得到一个连续動態系统。如果系统以一种连续可微的方式依赖于时间,我们就称它为一个光滑動態系统。.

新!!: 控制理论和动力系统 · 查看更多 »

动态系统理论

动态系统理论是數學領域中的一部份.主要在描述复杂的动态系统,一般會用微分方程或差分方程來表示。若用微分方程來表示,會稱為「連續动态系统」,若用差分方程來表示,則稱為「離散动态系统」。若其時間只在一些特定區域連續,在其餘區域離散,或時間是任意的時間集合(像康托尔集),需要用時標微積分來處理。有時也會需要用混合的算子來處理,像微分差分方程。 动态系统理论處理动态系统長期的量化特性.及研究一些自然界基本的運動方程系統的解,包括衛星的運動方程,電路的特性.以及生物學中出現偏微分方程的解。許多當代的研究集中在混沌理论的研究。 此領域有時也稱為动态系统、系统理論、數學動態系统理論或是動態系统的數學理論等。.

新!!: 控制理论和动态系统理论 · 查看更多 »

升力

升力(Lift),当流体流经一个物体的表面时会对其产生一个表面力,而则这个力的垂直于流体流向的分力,与之相对的则是方向平行于流体流向的阻力。如果流体是空气时,它产生的升力便叫做空气动力。航空器要想升到空中,必须能产生能克服自身重力的升力。 升力主要是靠機翼對空氣取得,飛機的機翼斷面形狀有很多種類,依照每種形狀適用於不同功用的飛機,飛機的機翼從斷面來看,通常機翼上半部曲面及下半部曲面不一樣,通常為上半部曲面弧長較長,空氣流經飛機機翼截面,因空氣流過機翼表面時被一分為二,經過機翼上表面的空氣是沿着曲线运动的(因为机翼上表面是弯曲的),所以会产生负压(负压提供空气沿曲线运动所需的向心力),而經過機翼下面的空氣是沿着比较平缓的表面运动的(机翼下表面相对平直),所以不会产生负压(参见康达效应),机翼下部压力高,上部压力小,壓力高的地方會往壓力低的部分移動,這就是升力的由來。.

新!!: 控制理论和升力 · 查看更多 »

反馈

反饋(,又稱回--授),--,是控制论的基本概念,指将系统的输出返回到输入端并以某种方式改变输入,它们之间存在因果关系的回路,进而影响系统功能的过程。 在这种情况下,我们可以说系统“反馈到它自身”。在讨论反馈系统时,因果关系的概念应当特别仔细对待: “对于反馈系统,很难作出简单的推理归因,因为当系统A影响到系统B,系统B又影响到系统A,形成了循环。这使得基于因果关系的分析特别艰难,需要将系统作为一个整体来看待。” 反馈可分为负反馈和正回饋。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。.

新!!: 控制理论和反馈 · 查看更多 »

可编程逻辑控制器

可程式邏輯控制器(Programmable Logic Controller,简称PLC),一种具有微处理器的数字电子设备,用于自动化控制的數位邏輯控制器,可以將控制指令隨時載入記憶體內儲存與執行。可程式控制器由內部CPU,指令及資料記憶體、輸入輸出單元、電源模組、數位類比等單元所模組化組合成。PLC可接收(輸入)及發送(輸出)多種型態的電氣或電子訊號,並使用他們來控制或監督幾乎所有種類的機械與電氣系統。 最初的可编程序逻辑控制器只有電路逻辑控制的功能,所以被命名为可程式邏輯控制器,后来随着不断的发展,这些当初功能简单的计算机模块已经有了包括逻辑控制,时序控制、模拟控制、多机通信等许多的功能,名称也改为可程式控制器(Programmable Controller),但是由于它的简写也是PC与个人电脑(Personal Computer)的简写相冲突,也由于多年来的使用习惯,人们还是经常使用可程式邏輯控制器这一称呼,并在术语中仍沿用PLC这一缩写。 在可程式邏輯控制器出现之前,一般要使用成百上千的继电器以及計數器才能组成具有相同功能的自动化系统,而现在,经过编程的简单的可程式邏輯控制器模块基本上已经代替了这些大型装置。可程式邏輯控制器的系统程序一般在出厂前已经初始化完毕,用户可以根据自己的需要自行编辑相应的用户程序来满足不同的自动化生产要求。 現在工業上使用可程式邏輯控制器已經相當接近於一台輕巧型電腦所構成,甚至已經出現整合個人電腦(採用嵌入式作業系統)與PLC結合架構的可程式自動化控制器(Programmable Automation Controller,簡稱PAC),能透過數位或類比輸入/輸出模組控制機器設備、製造處理流程及其他控制模組的電子系統。可程式邏輯控制器广泛应用于目前的工业控制领域。在工業控制領域中,PLC控制技術的應用已成為工業界不可或缺的一員。.

新!!: 控制理论和可编程逻辑控制器 · 查看更多 »

可觀測性

控制理論中的可觀察性(observability)是指系統可以由其外部輸出推斷其其內部狀態的程度。系統的可觀察性和可控制性是數學上对偶的概念。可觀察性最早是匈牙利裔工程師鲁道夫·卡尔曼針對線性動態系統提出的概念。若以信號流圖來看,若所有的內部狀態都可以輸出到輸出信號,此系統即有可觀察性。.

新!!: 控制理论和可觀測性 · 查看更多 »

可控制性

可控制性(Controllability)是中的重要特性,在許多控制問題中都很重要,例如是否可以透過回授穩定一個本身不穩定的系統,或是最佳控制的相關問題。 可控制性及可觀測性是同一個問題上的对偶概念。 簡單來說,可控制性是指是否可以透過一些允許的程序讓系統調整到其組態空間內的任何一個組態。隨著其系統模型或是框架的不同,定義也會略有改變。 以下是一些在系統或是控制文獻中出現過的可控制性定義:.

新!!: 控制理论和可控制性 · 查看更多 »

发送器

在电子学中,发送器(Transmitter)或无线电发送器指的是一种利用天线发送无线电波的装置。无线电发送器产生交变电流,作用于天线。天线产生无线电波,并将其发送至空间。除了在无线电广播中的应用,无线电发送器还被广泛使用在各种利用无线电进行通讯的设备中。常见的应用有手机、无线局域网、蓝牙、无线对讲机等等。 无线电发送器通常仅限于指代用于无线通讯或者无线电定位系统中发射无线电波的设备。广义上的无线电波发生器,例如微波炉或者电磁炉中产生无线电的装置,一般不被称为无线电发送器,虽然它们的工作原理是类似的。 Category:电信设备.

新!!: 控制理论和发送器 · 查看更多 »

向量空间的维数

数学中, 向量空间 V 的维数是 V 的基底的势或基数.

新!!: 控制理论和向量空间的维数 · 查看更多 »

向量控制

向量控制(vector control)也稱為磁場導向控制(field-oriented control,簡稱FOC),是一種利用變頻器(VFD)控制三相交流馬達的技術,利用調整變頻器的輸出頻率、輸出電壓的大小及角度,來控制馬達的輸出。其特性是可以個別控制馬達的的磁場及轉矩,類似他激式直流馬達的特性。由於處理時會將三相輸出電流及電壓以向量來表示,因此稱為向量控制。 向量控制可以適用在交流感應馬達及直流無刷馬達,早期開發的目的為了高性能的馬達應用,可以在整個頻率範圍內運轉、馬達零速時可以輸出額定轉矩、且可以快速的加減速。不過相較於直流馬達,向量控制可配合交流馬達使用,馬達體積小,成本及能耗都較低,因此開始受到產業界的關注。向量控制除了用在高性能的馬達應用場合外,也已用在一些家電的應用中。.

新!!: 控制理论和向量控制 · 查看更多 »

太空競賽

太空竞赛(Space Race、Космическая гонка)发生于二十世纪(1955年-1972年),是美国和苏联这两个冷战对手为了争夺航天实力的最高地位而展开的竞赛。第二次世界大战结束后,两国的太空竞赛就以导弹为主的核軍備競賽拉开了帷幕,技术及人员的俘获使其成为可能。技术优势享有至高无上的地位,是保障国家安全的需要,也是意识形态先进的象征。太空竞赛展开开拓性的努力,向月球、金星、火星发射人造衛星,无人驾驶空间探测器,以及向近地轨道和月球发射载人飞船。这项竞赛开始于1955年8月2日,在这四天前,美国发表声明,计划在国际地球物理年发射人造卫星。苏联对此回应,声称在不久的将来苏联也将发射卫星。1957年10月4日,史普尼克1號的轨道运行使苏联此次赢得了胜利,随后,1961年4月12日,尤里·加加林成为首次进入太空的人类成员,使苏联再次打败美国。1969年7月20日,伴随美国阿波罗11号完成人类第一次登月任务,太空竞赛达到顶峰。1972年4月,阿波罗-联盟测试计划达成合作协议,并在1975年7月,美国航天人员与苏联航天人员在地球轨道相遇,双方局面得到一定时期的缓和。 太空竞赛促进了地球通讯和气象卫星的发展,以及国际空间站的持续太空移民。同时,太空竞赛也增加了在教育科研发展领域的支出,促进了衍生技术的发展。.

新!!: 控制理论和太空競賽 · 查看更多 »

奈奎斯特图

奈奎斯特图(Nyquist plot)是對於一個連續時間的線性非時變系統,將其頻率響應的增益及相位以極座標的方式在复平面中繪出,常在控制系統或信號處理中使用,可以用來判斷一個有反馈的系統是否穩定。奈奎斯特图的命名是來自貝爾實驗室的電子工程師哈里·奈奎斯特(Harry Nyquist)。 奈奎斯特图上每一點都是對應一特定頻率下的頻率響應,該點相對於原點的角度表示相位,而和原點之間的距離表示增益,因此奈奎斯特图將振幅及相位的波德圖綜合在一張圖中。 一般的系統有低通濾波器的特性,高頻時的頻率響應會衰減,增益降低,因此在奈奎斯特图中會出現在較靠近原點的區域。.

新!!: 控制理论和奈奎斯特图 · 查看更多 »

奈奎斯特稳定判据

在控制理论和中,奈奎斯特稳定判据(Nyquist stability criterion)贝尔实验室的瑞典裔美国电气工程师哈里·奈奎斯特于1932年发现, on 用于确定動態系统稳定性的一种图形方法。由于它只需检查对应开环系统的奈奎斯特图,可以不必准确计算闭环或开环系统的零极点就可以使运用(虽然必须已知右半平面每一种类型的奇点的数目)。因此,他可以用在由无理函数定义的系统,如时滞系统。与波德圖相比,它可以处理右半平面有奇点的传递函数。此外,还可以很自然地推广到具有多个输入和多个输出的复杂系统,如飞机的控制系统。 奈奎斯特准则广泛应用于电子和控制工程以及其他领域中,用以设计、分析反馈系统。尽管奈奎斯特判据是最一般的稳定性测试之一,它还是限定在线性非時變(LTI)系统中。非线性系统必须使用更为复杂的稳定性判据,例如李雅普诺夫或。虽然奈奎斯特判据是一种图形方法,但它只能提供为何系统是稳定的或是不稳定的,或如何将一个系统改变得稳定的有限的直观感受。而波德圖等方法尽管不太一般,有时却在设计中更加有用。.

新!!: 控制理论和奈奎斯特稳定判据 · 查看更多 »

安定時間

安定時間(Settling time)也稱為整定時間,是指放大器或控制系統在步階輸入後,輸出到達最終值,且其誤差可維持在一定範圍(一般是會對稱於最終值)內的時間。安定時間包括很短的傳播延遲,加上輸出依照振盪到最終值附近的時間,以及最後安定在允許誤差附近的時間。 有能量儲存的系統無法立即反應,當輸入變化或有擾動時會有暫態的現象。.

新!!: 控制理论和安定時間 · 查看更多 »

安德雷·柯爾莫哥洛夫

安德雷·尼古拉耶維奇·柯爾莫哥洛夫(俄语:Андре́й Никола́евич Колмого́ров,英语:Andrey Nikolaevich Kolmogorov,),俄国數學家,主要研究概率論、算法信息論、拓撲學、直觉主义逻辑、紊流、经典力学和計算複雜性理論,最為人所道的是對概率論公理化所作出的貢獻。他曾說:"概率論作為數學學科,可以而且應該從公理開始建設,和幾何、代數的路一樣"。.

新!!: 控制理论和安德雷·柯爾莫哥洛夫 · 查看更多 »

巡航定速

巡航定速(英语:Cruise Control),是安装在汽车中能够自动控制车辆行驶速度的装置。巡航定速有时也被厂家称为定速巡航、速度控制(英语:Speed Control)或自动巡航(英语:Autocruise)。 在驾车行驶过程中,驾驶员可以启动巡航定速,之后不需再踩油门,车辆既可按照一定的速度前进。在巡航定速启动后,驾驶员也可通过巡航定速的手动调整装置,对车速进行小幅度调整,而无需踩油门。當需要減速時,踩下煞車踏板即可自動解除定速巡航,駕駛員可再按鈕重新以先前設定的速度恢復定速巡航。 在平缓的道路上,使用巡航定速可以保持车辆匀速行驶,减少耗油量;在长途驾驶时,巡航定速装置可以把驾驶员的脚从油门踏板上解放出来,从而减少疲劳程度;在有限速的路段,驾驶员可以运用巡航定速控制车速,不再看速度表,把注意力放在路面上,从而可以促进安全。 一部份廠牌搭配更先進的巡航定速系統,稱為「主動式定速巡航」(ACC, Adaptive Cruise Control)或「自動跟車」,除了可依照駕駛者所設定速度行駛外,還會偵測與前車間的距離,當距離過近時會主動減速,拉開到安全的距離後再自動加速至所設定的速度。.

新!!: 控制理论和巡航定速 · 查看更多 »

工程学

工程学、工程科学或工学,是通过研究与实践应用数学、自然科学、社会学等基础学科的知识,来达到改良各行业中现有建筑、机械、仪器、系统、材料、化學和加工步骤的设计和应用方式一门学科。实践与研究工程学的人叫做工程师。 在高等学府中,将自然科学原理应用至工业、农业、服务业等各个生产部门所形成的诸多工程学科也称为工科和工学。.

新!!: 控制理论和工程学 · 查看更多 »

庞特里亚金最大化原理

庞特里亚金最大化原理(Pontryagin's maximum principle)也有稱為庞特里亚金最小化原理,是最优控制中的理論,是在狀態或是輸入控制項有限制條件的情形下,可以找到將动力系统由一個狀態到另一個狀態的最優控制信號。此理論是蘇俄數學家列夫·庞特里亚金及他的學生在1956年提出的。這是变分法中歐拉-拉格朗日方程的特例。 簡單來說,此定理是指在所有可能的控制中,需讓「控制哈密頓量」(control Hamiltonian)取極值,極值是最大值或是最小值則依問題以及哈密頓量的符號定義而不同。正式的用法,也就是哈密頓量中所使用的符號,會取到最大值,但是此條目中使用的符號定義方式,會讓極值取到最小值。 若\mathcal是所有可能控制值的集合,則此原理指出,最優控制u^*必須滿足以下條件: 其中x^*\in C^1是最佳狀態軌跡,而\lambda^* \in BV是最佳 協態軌跡 此結果最早成功的應用在輸入控制有限制條件的最小時間問題中,不過也可以用在狀態有限制條件的問題中。 也可以推導控制哈密頓量的特殊條件。若最終時間t_f固定,且控制哈密頓量不是時間的顯函數\left(\tfrac \equiv 0\right),則: 若最終時間沒有限制,則: 若在某一軌跡上滿足庞特里亚金最大化原理,此原理是最佳解的必要条件。哈密顿-雅可比-贝尔曼方程 提供了最佳解的充份必要條件,但該條件須在整個狀態空間中都要成立。.

新!!: 控制理论和庞特里亚金最大化原理 · 查看更多 »

亞歷山大·李亞普諾夫

亞歷山大·李亞普諾夫(Александр Михайлович Ляпунов,Aleksandr Mikhailovich Lyapunov,)是俄羅斯應用數學家和物理学家。他的名字罗马字化后或被写作Ljapunov、Liapunov和Ljapunow。他的研究方向包括微分方程、力學、數學物理和概率論。李亞普諾夫以他在动态系统的稳定性方面做出的贡献而闻名这一,稳定性被命名为李雅普诺夫稳定性,另外他在数学物理和概率理论方面也作出了一定贡献。.

新!!: 控制理论和亞歷山大·李亞普諾夫 · 查看更多 »

亨德里克·韋德·波德

亨德里克·韋德·波德(),是荷兰裔美国工程师、科学家、发明家和作者。.

新!!: 控制理论和亨德里克·韋德·波德 · 查看更多 »

人工神经网络

人工神经网络(Artificial Neural Network,ANN),简称神经网络(Neural Network,NN)或類神經網絡,在机器学习和认知科学领域,是一种模仿生物神经网络(动物的中樞神經系統,特别是大脑)的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统,通俗的講就是具備學習功能。现代神经网络是一种非线性统计性数据建模工具。典型的神经网络具有以下三个部分:.

新!!: 控制理论和人工神经网络 · 查看更多 »

微分方程

微分方程(Differential equation,DE)是一種數學方程,用來描述某一類函数與其导数之间的关系。微分方程的解是一個符合方程的函數。而在初等数学的代数方程裡,其解是常数值。 微分方程的应用十分广泛,可以解决许多与导数有关的问题 。物理中许多涉及变力的运动学、动力学问题,如空气的阻力為速度函數的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。 数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。.

新!!: 控制理论和微分方程 · 查看更多 »

信号流图

信号流图(Signal-flow graph)最早是由克劳德·香农所發明 Reprinted in ,但因為美国麻省理工学院的于20世纪50年代初提出這個詞,因為也稱梅森圖(Mason graph) ,信号流图是特殊的,屬於,其中的節點表示系統的變數,而連接兩節點的邊表示二個變數之間的函數關係。信号流图的理論是以有向圖為基礎,不過是應用有向圖來表示系統,和有向圖的原理差異較大 i 。 信号流图最常用來表示物理系統和其控制器(網宇實體系統或控制系統)之間的關係,不過在許多電子電路、運算放大器電路、數位濾波器、狀態變數濾波器及類比濾波器的分析中也會用到信号流图。在許多文獻中,信号流图都可以轉換為一組線性方程或是線性微分方程,而各組變數之間的增益則用邊上的係數來表示,也有些信号流图會用特殊方式來表示非線性系統。而利用梅森增益公式可以找到輸入和輸出之間的關係。.

新!!: 控制理论和信号流图 · 查看更多 »

心理学

-- 心理学是一门研究人類以及其他动物的內在心理歷程、精神功能和外在行为的科学,既是一门理论学科,也是一门应用学科。包括理论心理学与应用心理学两大领域。 心理學研究涉及意識、感覺、知覺、認知、動機、情绪、人格、行為和人際關係等眾多領域,影響其他學科的發展,例如:教育學、管理學、傳播學、社會學、經濟學、精神病學、統計學、計算機科學以及文學等等。心理學一方面嘗試用大腦運作來解釋個体基本的行為與心理機能,同時,心理學也嘗試解釋個體心理機能在社會行為與社會動力中的角色。心理學家從事基礎研究的目的是描述、解釋、預測和控制行為。應用心理學家還有第五個目的——提高人類生活的質量。這些目標構成了心理學事業的基礎。.

新!!: 控制理论和心理学 · 查看更多 »

化油器

化油器(Carburetor)是汽車、機車裡發動機中的一個供油裝置,其作用是利用發動機工作產生的真空負壓將一定比例的汽油與空氣混合,之後將混合氣供給發動機的燃燒室。一公斤汽油完全燃燒需要大約15公斤的空氣,所以油和氣混合很重要。化油器吸進空氣的通道中間是一個較窄的喉部,加速引擎吸進的空氣,產生文氏管效應將細管中的燃油吸出、霧化、和空氣相混合,汽車的化油器通常包括燃油室、阻風門、怠速量孔、主量孔、空氣節流喉管和加速泵等部分。 雖然化油器的構造簡單耐用、成本低廉,不過其供油精準度已經無法滿足現今嚴苛的環保法規,所以在近十幾年已發展国家汽车市场的新車上,已經看不見化油器了。但是在发展中国家(如印度)的廉价的新车上,还非常的普遍。 同样化油器但在高端的摩托车上也被燃料噴射裝置技术取代,但基于体积、技术、成本等问题,在中、低價的摩托车,以及各种各样的通用机械上还将长期使用。 目前化油器的應用很廣泛,包括:摩托車、船外機、汽油發電機、水泵、割灌機、綠籬機、掃雪機、油鋸、園林拖拉機、高壓清洗機、動力噴霧機、空氣體壓縮機、打夯機、手提挖坑機、旋耕機等。 化油器行业知名厂家有:日本的三国Mikuni、京滨Keihin、泰凯TK和美国的华博罗Walbro等。.

新!!: 控制理论和化油器 · 查看更多 »

分佈式參數系統

分佈式參數系統(distributed parameter system)不同於集總參數系統,是状态空间為無限維度的系統。這類系統也稱為是無限維系統。典型的例子是用偏微分方程或是时滞微分方程描述的系統。以下段落所探討的會以線性非時變分佈式參數系統為主。.

新!!: 控制理论和分佈式參數系統 · 查看更多 »

哈里·奈奎斯特

哈里·奈奎斯特(Harry Nyquist,Harry Theodor Nyqvist,),瑞典裔美國物理學家,通訊理論的奠基者之一。.

新!!: 控制理论和哈里·奈奎斯特 · 查看更多 »

冲激响应

在信号处理中,脈衝響應(Impulse response)一般是指系统在输入为单位冲激函数时的输出(响应)。对于连续时间系统来说,冲激响应一般用函数h(t;\tau)来表示,相对应的输入信号,也就是单位冲激函数满足狄拉克δ函数的形式,其函数定义如下: 并且,在从负无穷到正无穷区间内积分为1: 在输入为狄拉克δ函数时,系统的冲激响应h(t)包含了系统的所有信息。所以对于任意输入信号x(t),可以用连续域卷积的方法得出所对应的输出y(t)。也就是: 对于离散时间系统来说,冲激响应一般用序列h来表示,相对应的离散输入信号,也就是单位脉冲函数满足克罗内克δ的形式,在信号与系统科学中可以定义函数如下: 同样道理,在输入为\delta时,离散系统的冲激响应h包含了系统的所有信息。所以对于任意输入信号x,可以用离散域卷积(求和)的方法得出所对应的输出信号y。也就是:.

新!!: 控制理论和冲激响应 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 控制理论和函数 · 查看更多 »

共形映射

数学上,共形变换(Conformal map)或稱保角变换,來自於流体力学和几何学的概念,是一个保持角度不变的映射。 更正式的说,一个映射 称为在 z_0 \, 共形(或者保角),如果它保持穿过 z_0 \, 的曲线间的定向角度,以及它们的取向也就是说方向。共形变换保持了角度以及无穷小物体的形状,但是不一定保持它们的尺寸。 共形的性质可以用坐标变换的导数矩阵雅可比矩阵的术语来表述。如果变换的雅可比矩阵处处都是一个标量乘以一个旋转矩阵,则变换是共形的。.

新!!: 控制理论和共形映射 · 查看更多 »

剑桥大学

劍橋大學(University of Cambridge;勳銜:Cantab)為一所坐落於英國劍橋市的研究型書院聯邦制大學。劍橋為英語世界中歷史第二悠久的大學,前身是一個於1209年成立的學者協會。這些學者本為牛津大學的一員,但後因與牛津鎮民發生衝突而移居至此。這兩所古老的大學在辦學模式等多方面都非常相似,並經常獲合稱為「牛剑」。 劍橋大學由31所成員書院及6所學術學院組成。雖大學本身為公立性質,但享有高度自治權的書院則屬私立機構。它們有自己的管理架構、收生以及學生活動安排,工作有別於負責教研的大學中央。劍橋大學是多個學術聯盟的成員之一,亦為英國「金三角名校」及劍橋大學醫療夥伴聯盟的一部分,並與產業聚集地的發展息息相關。 除了各學系安排的課堂,劍橋的學生也需出席由書院提供的輔導課程。學校共設八間文藝及科學博物館,並有館藏逾1500萬冊的圖書館系統及全球最古老的大學出版社。除了學習,學生可加入各學會、學團及體育校隊,參與不同的課外活動。劍橋大學校友包括多位著名數學家、科學家、經濟學家、作家、哲學家。共有116位諾貝爾獲獎者、15位英國首相、10位菲爾茲獎得主、6位图灵奖得主曾為此校的師生、校友或研究人員。.

新!!: 控制理论和剑桥大学 · 查看更多 »

回授線性化

回授線性化(Feedback linearization)是在控制理论中控制非線性系統的常見作法,其作法是透過適當的控制輸入及狀態變數轉換,將非線性系統轉換為等效的線性系統。非線性系統的回授線性化可以用以下的形式表示 y &.

新!!: 控制理论和回授線性化 · 查看更多 »

皮埃尔-西蒙·拉普拉斯

埃尔-西蒙·拉普拉斯侯爵(Pierre-Simon marquis de Laplace,),法国著名的天文学家和数学家,他的工作对天体力学和统计学有举足轻重的发展。.

新!!: 控制理论和皮埃尔-西蒙·拉普拉斯 · 查看更多 »

犯罪學

犯罪學(Criminology)是一門社會科學,主題是尋找犯罪行為的現象與規律,尋找犯罪發生的原因,藉此尋找方法以減輕犯罪對社會的影響(最後這項於今日已被更精緻地分科為刑事政策,而與犯罪學同屬刑事學的分支學門)。除了針對犯罪人以外,犯罪學研究也會調查社會與政府對犯罪的認定標準和反應,以及研究如何改善被害人的處境。 在研究方法上,當世的犯罪學特別著重於應用社會學、心理學和經濟學的理論及研究方法來觀察和瞭解犯罪現象、成因。此外,隨著大腦神經科學和基因的研究興盛,這兩種領域的觀點也越來越受犯罪學的歡迎。.

新!!: 控制理论和犯罪學 · 查看更多 »

状态空间

态空间是控制工程中的一個名詞。状态是指在系统中可决定系统状态、最小数目变量的有序集合。而所谓状态空间则是指该系统全部可能状态的集合。簡單來說,状态空间可以視為一個以狀態變數為座標軸的空間,因此系統的狀態可以表示為此空間中的一個向量。 状态空间表示法即為一種將物理系統表示為一組輸入、輸出及狀態的數學模式,而輸入、輸出及狀態之間的關係可用許多一階微分方程來描述。 為了使數學模式不受輸入、輸出及狀態的個數所影響,輸入、輸出及狀態都會以向量的形式表示,而微分方程(若是線性非時變系統,可將微分方程轉變為代數方程)則會以矩陣的形式來來表示。 状态空间表示法提供一種方便簡捷的方法來針對多輸入、多輸出的系統進行分析並建立模型。一般頻域的系統處理方式需限制在常係數,啟始條件為0的系統。而状态空间表示法對系統的係數及啟始條件沒有限制。.

新!!: 控制理论和状态空间 · 查看更多 »

火控系统

火控系统(Fire control system、FCS又稱火器管制裝置,或譯射控系統)是控制射击武器自动实施瞄准与发射的装备的总称。火控系統是由許多組件結合而稱的系統,通常包含火力控制計算機(gun data computer),輔助導引裝置(director)和雷達。火控系統執行的任務與人類砲手相同,但可以更快並準確的完成任務。.

新!!: 控制理论和火控系统 · 查看更多 »

理查德·貝爾曼

查德·貝爾曼(Richard Bellman,),美國應用數學家,美國國家科學院院士,和動態規劃的創始人。 貝爾曼先後在佈魯克林學院和威斯康星大學學習數學。隨後他在洛斯·阿拉莫斯為一個理論物理部門的團體工作。他在所羅門·萊夫謝茨的指導下與1946年獲得普林斯頓大學博士學位。 貝爾曼曾是南加州大學教授,美國藝術與科學研究院研究院(1975年)以及美國國家工程院院士(1977年)。他在1979年被授予电气电子工程师协会獎,由於其在“決策過程和控制系統理論方面的貢獻,特別是動態規劃的發明和應用。”他的主要工作是貝爾曼方程(Bellman方程)。.

新!!: 控制理论和理查德·貝爾曼 · 查看更多 »

社会学

會學(sociology)起源於19世紀末期,是一門研究社會的學科。社會學使用各種研究方法進行實證調查和批判分析,以發展及完善一套有關人類社會結構及活動的知識體系,並會以運用這些知識去尋求或改善社會福利為目標。社會學的研究範圍廣泛,包括了由微觀層級的社會行動(agency)或人際互動,至宏觀層級的社會系統或結構,社會學的本體有社會中的個人、社會結構、社會變遷、社會問題、和社會控制,因此社會學通常跟經濟學、政治學、人類學、心理學等學科並列於社會科學領域之下。 社會學在研究題材上或研究法則上均有相當的廣泛性,其傳統研究對象包括了社會分層、社會階級、社會流動、社會宗教、社會法律、越軌行為等,而採取的模式則包括定性和定量的研究方法。由於人類活動的所有領域都是由社會結構、個體機構的影響下塑造而成,所以隨著社會發展,社會學進一步擴大其研究重點至其他相關科目,例如醫療、護理、軍事或刑事制度、網際網路等,甚至是例如科學知識發展在社會活動中的作用一類的課題。另一方面,社會科學方法(social scientific methods)的範圍也越來越廣泛。在20世紀中葉以來多樣化的語言、文化轉變也同時產生了更多更具詮釋性、哲學性的社會研究模式。然而,自20世紀末起的科技浪潮,也為社會學帶來了嶄新的數學化計算分析技術,例如個體為本模型和社交網路。 因其興起的歷史背景,社會學研究的重心很大一部份放在現代性社會中的各種生活實態,或是當代社會如何形成演進以至今日的過程,不但注重描述現況,也不忽略社會變遷。社會學的研究對象範圍廣泛,小到幾個人面對面的日常互動,大到全球化的社會趨勢及潮流。家庭、各式各樣的組織、企業工廠等經濟體、城市、市場、政黨、國家、文化、媒體等都是社會學研究的對象,而這些研究對象的共通點是一些具有社會性的社會事實。雖然「社會性」的定義在不同學派之間仍有爭執,但社會事實外在於個人,且對個人的行為跟認知有影響,這一點是大致上為社會學者所共同接受的。.

新!!: 控制理论和社会学 · 查看更多 »

積分器

積分器是一種元件,其輸出信號為輸入信號對時間的積分,積分器可以視為是計數器的連續版本,可以將輸入累計後再輸出。 積分器是許多工程及科技應用中重要的一部份。像機械積分器可以用來量測水流或是電能,類比電子積分器是類比電腦的基礎。.

新!!: 控制理论和積分器 · 查看更多 »

積分終結

#重定向 積分飽和.

新!!: 控制理论和積分終結 · 查看更多 »

穩定多項式

在探討微分方程或是差分方程的時,多項式若滿足任一個性質,即稱為穩定:.

新!!: 控制理论和穩定多項式 · 查看更多 »

穩定性

穩定性是數學或工程上的用語,判別一系統在有界的輸入是否也產生有界的輸出。若是,稱系統為穩定;若否,則稱系統為不穩定。.

新!!: 控制理论和穩定性 · 查看更多 »

第二次世界大战

二次世界大戰(又常簡稱二次大戰、二戰、WWII等;World War II;Seconde Guerre mondiale;Zweiter Weltkrieg;Вторая мировая война;第二次世界大戰)是一次自1939年至1945年所爆發的全球性軍事衝突,整場戰爭涉及到全球絕大多數的國家,包括所有的大國,并最終分成了兩個彼此對立的軍事同盟─同盟國和軸心國。這次戰爭是人類歷史上最大規模的戰爭,動員了1億多名軍人參與這次軍事衝突。主要的參戰國紛紛宣布進入總體戰狀態,幾乎將自身國家的全部經濟、工業和科學技術應用於戰爭之上,同時也將民用與軍用的資源合併以方便統籌規劃。包括有猶太人大屠殺、南京大屠殺、戰爭中日軍對中國軍民進行細菌戰、以及最终美國對日本首次使用原子彈等事件,使得第二次世界大戰也是自有紀錄以來涉及最多大規模民眾死亡案例的軍事衝突,全部總計便將近有5,000萬至7,000萬人因而死亡,這也讓第二次世界大戰成了人類歷史上死亡人數最多的戰爭。 儘管早在1931年9月,日本便侵佔了中國的滿洲,而後建立了傀儡國家滿洲國。至1937年7月盧溝橋事變後中日更爆發了全面戰爭。不過大多數人仍多把第二次世界大戰的爆發定為1939年9月1日德國入侵波蘭開始,這次入侵行動隨即導致英國與法國向德國宣戰。然而德國在入侵波蘭後開始著手嘗試在歐洲建立一個大帝國,自1939年末期到1941年初期為止,發動一連串戰爭並藉由條約的簽署使得德國幾乎佔領了歐洲絕大部分的地區,而名義上保持中立的蘇聯在和德國簽訂《德蘇互不侵犯條約》後,也跟進侵略潮流,陸續佔領或者吞併了其在歐洲邊界的鄰近6個國家,在這之中也包括第二次世界大戰爆發時所佔領的波蘭領土。英國以及大英國協的成員國則堅持持續與軸心國繼續作戰,並分別在北非和大西洋海上發生多次軍事衝突,而這也使得英國成了歐洲地區少數仍能繼續反抗德軍入侵的主要武力之一。1941年6月,歐洲的軸心國集團決定撕毀與蘇聯的合作約定,聯合入侵蘇聯領土,這次攻勢也開始了人類歷史上規模最大的地面戰爭爆發,但也在之後讓原本幾乎統轄整個歐洲地區的軸心國被迫投入大量軍力來維持作戰優勢。到了1941年12月,已經加入軸心國的大日本帝國為了能夠在亞洲及太平洋地區獲得領導地位,陸續襲擊位于太平洋的美國統轄地區和座落於與中南半島的歐洲殖民地,很快地於西太平洋和東亞戰區獲得了主導權。 到了1942年時日本開始在一系列的海戰中戰敗,位於歐洲的軸心國也陸續於北非戰役以及斯大林格勒戰役中節節敗退,這些都迫使軸心國停下進攻的腳步。1943年時,義大利法西斯政權在西西里島戰役中面對同盟國部隊嚴重失利,另一方面德軍在库尔斯克会战戰敗後失去對於東歐的領導地位,同時美國也在太平洋戰區中獲得了一連串的勝利,自此軸心國集團逐漸失去主導權並開始嘗試將佈署於各地的前線部隊進行戰略性的撤退。到了1944年時,盟軍決定登陸法國以開闢第二戰場,而蘇聯除了成功收復過去被佔領的領土外,也開始轉往進攻德國與其同盟國家的土地。在蘇聯和波蘭部隊共同攻入柏林後,第二次世界大戰歐洲戰區最終在1945年5月8日德國投降的情況下宣告結束。而另一方面美國在1944年和1945年成功擊敗了日本海軍部隊並陸續佔領了數個重要的西太平洋島嶼,這使得日本列島隨時面臨同盟國部隊入侵的危機。最後在美軍分別於廣島市和長崎市投下原子彈並造成大量日本平民死亡。1945年8月8日蘇聯進攻日本控制下的中國東北地區,8月14日日本跟進宣佈願意接受無條件投降的條件,而隨著亞洲戰事的停息也意味著第二次世界大戰正式結束。 1945年時第二次世界大戰以同盟國勝利宣告結束,然而二次大戰對世界影響極為深遠,改變了往後世界的政治版圖和社會結構,特別是戰敗的軸心國集團被迫接受同盟國的安排。1945年10月24日聯合國亦宣告成立,期望能夠促進各國合作並防止未來的軍事衝突;同時戰勝的盟軍各國,也紛紛在聯合國各個機構中擔任重要職位,特別是以美國、蘇聯、中國、英國和法國5個國家為首成立聯合國聯合國安全理事會的常任理事國,主導著世界的秩序.

新!!: 控制理论和第二次世界大战 · 查看更多 »

節流閥

流閥,俗稱油門,或稱氣門、氣閥,是一個可以調節液體壓力的構造,可調整進入引擎的空气量,進而調整引擎的出力。.

新!!: 控制理论和節流閥 · 查看更多 »

系统科学

系统指的是由相互联系、相互作用的要素(或部分)组成的具有一定结构和功能的有机整体;准确来说,要素+结构.

新!!: 控制理论和系统科学 · 查看更多 »

純量

#重定向 标量.

新!!: 控制理论和純量 · 查看更多 »

網絡化控制系統

網絡化控制系統(Networked Control System)是指控制迴路的元件透過通訊网络交換資料的。其特徵是控制系統的命令及回授是在網路中以封包的方式傳送。.

新!!: 控制理论和網絡化控制系統 · 查看更多 »

線性系統

線性系統是一數學模型,是指用線性運算子組成的系統。相較於非線性系統,線性系統的特性比較簡單。例如以下的系統即為一線性系統: 由於線性系統較容易處理,許多時候會將系統理想化或簡化為線性系統。線性系統常應用在自動控制理論、信號處理及電信上。像無線通訊訊號在介質中的傳播就可以用線性系統來模擬。 線性系統需滿足線性的特性,若線性系統還滿足非時變性(即系統的輸入信號若延遲τ秒,那麼得到的輸出除了這τ秒延時以外是完全相同的),則稱為線性時不變系統。.

新!!: 控制理论和線性系統 · 查看更多 »

線性關係

在现代学术界中,線性關係一詞存在2种不同的含义。其一,若某數學函數或数量关系的函数图形呈現為一條直線或線段,那么这种关系就是一种線性的關係。其二,在代数学和数学分析学中,如果一种运算同时满足特定的“加性”和“齐性”,则称这种运算是线性的。.

新!!: 控制理论和線性關係 · 查看更多 »

线性时不变系统理论

线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。.

新!!: 控制理论和线性时不变系统理论 · 查看更多 »

经济学

經濟學是一門对产品和服务的生产、分配以及消费进行研究的社會科學。西方语言中的“经济学”一词源於古希臘的Marshall, Alfred, and Mary Paley Marshall (1879).

新!!: 控制理论和经济学 · 查看更多 »

维纳滤波

维纳滤波是美國應用數學家諾伯特·維納(Norbert Wiener)在二十世纪四十年代提出的一种滤波器,并在1949年出.

新!!: 控制理论和维纳滤波 · 查看更多 »

無差拍控制

無差拍控制(dead-beat control)是離散控制理論的一種問題,是針對特定系統,要找到可以在最短時間內讓輸出進入穩態的輸入信號。 可以證明在N階的線性系統中,若系統為零可控(null controllable,是指可以利用特定輸入使狀態變為0),其最少的步數不會超過N步(依初始條件而不同)。 解法是用反饋的方式,使閉迴路轉移函數的極點都在z平面的原點(有關z平面及轉移函數的細節,請參考Z轉換)。因此線性系統的例子很容易找到解。因此一個極點都在z平面的閉迴路轉移函數有時也會稱為無差拍轉移函數(dead beat transfer function)。 非線性系統的無差拍控制是一個仍在研究中的問題(可以參考以下Nesic的參考資料)。 無差拍控制器因為其動態特性良好,常用在過程控制中。此控制器是典型的回控控制器,其控制增益是依系統階數及正規化自然頻率的表來設定。 無差拍控制的特性如下:.

新!!: 控制理论和無差拍控制 · 查看更多 »

狀態

#重定向 状态.

新!!: 控制理论和狀態 · 查看更多 »

目標值

標值(target)也稱為設定值(setpoint,簡稱SP)或參考值(reference),是模控學及控制理论中的名詞,是指系統想要達到的狀態,常用來描述系統標準的組態。變數相對其目標值的偏離量是以誤差為準的控制系統的基礎,會利用回授的方式使系統回到其穩態。例如一個鍋爐有其溫度設定值,也就是鍋爐控制系統希望鍋爐維持的溫度。.

新!!: 控制理论和目標值 · 查看更多 »

莱特兄弟

莱特兄弟(英语:Wilbur and Orville Wright,Wright brothers,1867年4月16日—1912年5月30日/1871年8月19日—1948年1月30日),生于美国印第安那州及俄亥俄州,美国航空先驱、亲生兄弟奥维尔·莱特(Orville Wright)和威尔伯·莱特(Wilbur Wright)。 1903年12月17日莱特兄弟驾驶自行研制的固定翼飞机飞行者一号实现了人类史上首次重于空气的航空器持续而且受控的动力飞行 BBC News, March 19, 1999.

新!!: 控制理论和莱特兄弟 · 查看更多 »

遗传算法

遗传算法(genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。 遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)可抽象表示为染色體,使种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中评价整个种群的适应度,从当前种群中随机地选择多个个体(基于它们的适应度),通过自然选择和突变产生新的生命种群,该种群在算法的下一次迭代中成为当前种群。.

新!!: 控制理论和遗传算法 · 查看更多 »

鍵結圖

鍵結圖(Bond Graph),或稱鍵圖,是一種可同時處理多種領域的動態系統模擬方法。.

新!!: 控制理论和鍵結圖 · 查看更多 »

非線性系統

在物理科學中,如果描述某個系統的方程其輸入(自變數)與輸出(應變數)不成正比,則稱為非線性系統。由於自然界中大部分的系統本質上都是非線性的,因此許多工程師、物理學家、數學家和其他科學家對於非線性問題的研究都極感興趣。非線性系統和線性系統最大的差別在於,非線性系統可能會導致混沌、不可預測,或是不直觀的結果。 一般來說,非線性系統的行為在數學上是用一組非線性聯立方程來描述的。非線性方程裡含有由未知數構成的非一次多項式;換句話說,一個非線性方程並不能寫成其未知數的線性組合。而非線性微分方程,則是指方程裡含有未知函數及其導函數的乘冪不等於一的項。在判定一個方程是線性或非線性時,只需考慮未知數(或未知函數)的部分,不需要檢查方程中是否有已知的非線性項。例如在微分方程中,若所有的未知函數、未知導函數皆為一次,即使出現由某個已知變數所構成的非線性函數,我們仍稱它是一個線性微分方程。 由於非線性方程非常難解,因此我們常常需要以線性方程來近似一個非線性系統(線性近似)。這種近似對某範圍內的輸入值(自變數)是很準確的,但線性近似之後反而會無法解釋許多有趣的現象,例如孤波、混沌和奇點。這些奇特的現象,也常常讓非線性系統的行為看起來違反直覺、不可預測,或甚至混沌。雖然「混沌的行為」和「隨機的行為」感覺很相似,但兩者絕對不能混為一談;也就是說,一個混沌系統的行為絕對不是隨機的。 舉例來說,許多天氣系統就是混沌的,微小的擾動即可導致整個系統產生各種不同的複雜結果。就目前的科技而言,這種天氣的非線性特性即成了長期天氣預報的絆腳石。 某些書的作者以非線性科學來代指非線性系統的研究,但也有人不以為然:.

新!!: 控制理论和非線性系統 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 控制理论和頻域 · 查看更多 »

詹姆斯·克拉克·麦克斯韦

詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell,),苏格兰数学物理学家。其最大功绩是提出了将电、磁、光统归为电磁场中现象的麦克斯韦方程组。麦克斯韦在电磁学领域的功绩实现了物理学自艾萨克·牛顿后的第二次统一。 在1864年發表的論文《電磁場的動力學理論》中,麦克斯韦提出電場和磁場以波的形式以光速在空間中传播,并提出光是引起同种介质中電场和磁场中許多現象的电磁扰动,同时从理论上预测了电磁波的存在。此外,他还推进了分子运动论的发展,提出了彩色摄影的基础理论,奠定了结构刚度分析的基礎。 麦克斯韦被普遍认为是十九世纪物理学家中,对于二十世纪初物理学的巨大进展影响最为巨大的一位。他的科学工作为狭义相对论和量子力学打下理论基础,是现代物理学的先声。有观点认为,他对物理学的发展做出的贡献仅次于艾萨克·牛顿和阿尔伯特·爱因斯坦。在麦克斯韦百年诞辰时,爱因斯坦本人盛赞了麦克斯韦,称其对于物理学做出了“自牛顿时代以来的一次最深刻、最富有成效的变革”。.

新!!: 控制理论和詹姆斯·克拉克·麦克斯韦 · 查看更多 »

諾伯特·維納

諾伯特·維納(Norbert Wiener,),生於美國密蘇里州哥倫比亞,美国應用數學家,在電子工程方面貢獻良多。他是隨機過程和噪声信号处理的先驅,又提出「控制論」一詞。.

新!!: 控制理论和諾伯特·維納 · 查看更多 »

试错

嘗試錯誤法(trial and error)是一種用來解決問題、獲取知識的常見方法。此種方法可以視為簡易解決問題的方法中的一種,與使用洞察力和理論推導的方法正好相反。.

新!!: 控制理论和试错 · 查看更多 »

鲁棒控制

鲁棒控制(Robust control):所谓“鲁棒性”,是指控制系统在一定(结构,大小)的参数摄动下,维持某些性能的特性。是控制理论中的一个分支,是专门用来处理控制器设计时逼近的不确定性。 鲁棒控制方法一般应用于只要在一些集合(特别是紧集合)中存在不确定参数或者扰动的情况。鲁棒控制意在使系统具有鲁棒性,并在存在有界建模误差的情况下使系统稳定。 波特等人的早期控制方法已具有一定鲁棒性:早在1960年代和1970年代,状态空间方法刚被发明的时候,他们就发现有时候会缺少鲁棒性,并进行了进一步的研究和改进。这便是鲁棒控制的初始阶段,随后在80年代和90年代有具体的應用,并一直活跃至今。 与自适应控制的对比:鲁棒控制专注于状态,而不是对变量的调整,控制器需要在基于某些变量未知但有界的假设下,才能够有效的工作。.

新!!: 控制理论和鲁棒控制 · 查看更多 »

负反馈放大器

负反馈放大器(negative feedback amplifier)是一种将输出信号按比例反馈回输入信号,从而达到控制的放大器。通过引入负反馈,放大器的性能,例如增益的稳定性、线性、频率响应、阶跃响应等,可以得到改善。此外,制造过程以及使用环境所造成的器件参数偏差对放大器性能的影响,可以通过引入负反馈缓解。由于以上优点,负反馈放大器在许多放大电路以及控制系统中有着广泛的应用。 一个负反馈放大器具有负反馈模式的三个基本元素(如图1):一个开环增益为AOL的放大器、一个系数为β 优点:.

新!!: 控制理论和负反馈放大器 · 查看更多 »

贝叶斯概率

贝叶斯概率(Bayesian probability)是由贝叶斯理论所提供的一种对概率的解释,它采用将概率定义为某人对一个命题信任的程度的概念。贝叶斯理论同时也建议贝叶斯定理可以用作根据新的信息导出或者更新现有的置信度的规则。.

新!!: 控制理论和贝叶斯概率 · 查看更多 »

超前-滞后补偿器

超前-滞后补偿器是中的一個元件,可以改善回授或是控制系統中不理想的頻率響應,是經典控制理論中的一個基本元件。.

新!!: 控制理论和超前-滞后补偿器 · 查看更多 »

过冲 (信号)

#重定向 过冲.

新!!: 控制理论和过冲 (信号) · 查看更多 »

过程控制

过程控制是在工業系統中,為了控制過程的輸出,利用統計或工程上的方法處理過程的結構、運作方式或其演算方式。處理过程控制的系統可稱為过程控制系統。.

新!!: 控制理论和过程控制 · 查看更多 »

进化计算

进化计算是遗传算法、进化策略、进化规划的统称。进化计算起源于20世纪50年代末,成熟于20世纪80年代,目前主要被应用于工程控制、机器学习、函数优化等领域。.

新!!: 控制理论和进化计算 · 查看更多 »

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

新!!: 控制理论和范数 · 查看更多 »

能量成型控制

能量成型控制(Energy-shaping control)也稱為能量整型控制,是將控制器及受控體均視為設備的控制理論。其控制策略是以能量保持的方式進行互連,以達到理想的行為。.

新!!: 控制理论和能量成型控制 · 查看更多 »

航天

航天指与研究和探索外层空间有关的领域,航天器在太空的航行活动。科学界一般把太阳系内的航行活动称为“航天”,而把太阳系外的航行活动称为“航宇”。 按航天器探索、开发和利用的对象划分,航天包括环绕地球的运行、飞往月球的航行、飞往行星及其卫星的航行、星际航行(行星际航行、恒星际航行)。按航天器与探索、开发和利用对象的关系或位置划分,航天飞行方式包括飞越(从天体近旁飞过)、绕飞(环绕天体飞行)、着陆(降落在天体上面)、返回(脱离天体、重返地球)。 执行军事任务(具有军事目的)的航天活动,称为军用航天;执行科学研究、经济开发、工业生产等民用任务(具有非军事目的)的航天活动,称为民用航天;执行商业合同任务(以营利为目的)的航天活动,成为商业航天。有人驾驶航天器的航天活动,称为载人航天;没有人驾驶航天器的航天活动,称为不载人航天。 航天的主要目的是太空探索,其商业用途主要是卫星通讯,也有近来兴起的太空旅游。其他非商用的用途包括星空观测,间谍卫星和地球观测。.

新!!: 控制理论和航天 · 查看更多 »

航空器

航空器(Aircraft)是飞行器中的一个大类,是指通过机身与空气的相对运动(不是由空气对地面发生的反作用)而获得空气动力升空飞行的任何机器。 任何一种航空器都必须产生出與自身重力相同的升力来,才能进入空中。根据升力的产生方式的不同,可分为两类:轻于空气的航空器和重于空气的航空器,前者依靠空气之静浮力升空;后者依靠空气动力克服自身重力升空。 由构造特点不同,轻于空气的航空器和重于空气的航空器有着不同的特点。轻于空气的航空器主体为一个气囊,内部一般充入密度比空气较小的气体,如氢气和氦气,借着大气中的静浮力使航空器能够滞留于空中。在重于空气的航空器中使用范围最广泛的是飞机,它由装有提供拉力或推力的动力设备、产生升力的机翼和控制飞行姿态的操纵设备等构成。.

新!!: 控制理论和航空器 · 查看更多 »

阿道夫·霍维茨

#重定向 阿道夫·赫維茲.

新!!: 控制理论和阿道夫·霍维茨 · 查看更多 »

起停式控制

起停式控制(bang-bang control),也稱為砰砰控制、bang-bang控制、开关控制、繼電器式控制或磁滯控制,是會讓控制輸出在兩種狀態之間切換的回授控制器,起停式控制會使控制輸出在某個狀態停留一段時間,再跳到另一個狀態。起停式控制可以用有迟滞功能的元件實作。 起停式控制可以控制只接受二種狀態輸入的設備,例如一個只能控制全開或全關的電爐。常見的家用自動調溫器即為屬於起停式控制。起停式控制的輸出可以用離散形式的单位阶跃函数來表示。因為起停式控制控制信號的不連續,控制系統中若有包括起停式控制,即可視為是一個變結構系統,因此起停式控制器也屬於變結構控制器。 起停式控制的優點是結構簡單方便,但其缺點是控制動作的不連續,若設計不當,容易造成系統震盪(這也是稱為砰砰控制的原因)。.

新!!: 控制理论和起停式控制 · 查看更多 »

開迴路控制器

開迴路控制器是控制器的一種,只利用系統的數學模型及目前狀態產生控制信號,送到受控系統。 開迴路控制器和閉迴路控制器的最大不同是沒有回授信號來判斷系統輸出是否已達到理想值,因此系統無法觀測正在控制的程序。真正的開迴路控制器無法進行机器学习,無法修正控制中造成的誤差,也無法針對系統的擾動進行補償。.

新!!: 控制理论和開迴路控制器 · 查看更多 »

自动化技术

自动化技术是一门综合性技术,它和控制论、信息论、系统工程、计算机技术、电子学、液压气压技术、自動控制等都有着十分密切的关系,而其中又以“控制理论”和“计算机技术”对自动化技术的影响最大。一些过程已经被完全自动化。 自动化的最大好处是可以节省劳动力,但是,它也可用于节约能源和材料,并改善质量,准确度和精度。 自动化技术已被通过各种方式通常在组合来实现的,包括机械,液压,气动,电气,电子和计算机。复杂系统,例如现代化工厂,飞机和船只,通常使用所有这些组合的技术。.

新!!: 控制理论和自动化技术 · 查看更多 »

自适应控制

自适应控制 (Adaptive control)也稱為適應控制,是一种对系统参数的变化具有适应能力的控制方法。在一些系统中,系统的参数具有较大的不确定性,并可能在系统运行期间发生较大改变。比如说,客机在作越洋飞行时,随着时间的流逝,其重量和重心会由于燃油的消耗而发生改变。虽然传统控制方法(即基于时不变假设Non-Time-Variant Assumption的控制方法)具有一定的对抗系统参数变化的能力,但是当系统参数发生较大变化时,传统控制方法的性能就会出现显著的下降,甚至产--发散。 需要注意区别的是,虽然同样是为对抗系统参数的不确定性和时变性而设计的,自适应控制与鲁棒控制有着本质区别。鲁棒控制是采用过大的控制量来保证受控对象的状态向收敛方向移动。其优点是,只要参数的改变程度处在控制器的设计范围之内,系统就能保持稳定。而缺点在于,过大的控制量会导致系统发生“抖动”(Chattering),从而导致系统跟踪精度有限或驱动机构磨损加剧。而自适应控制则是通过逐步逼近系统特性来保证跟踪精度,其缺点是,在开始阶段不一定能保证稳定,而且往往需要运行一段时间才能实现精确跟踪输入量。其优点是在正常运行时系统可以比较平稳地实现精确跟踪。.

新!!: 控制理论和自适应控制 · 查看更多 »

自激振荡

自激振荡(Self-exciting oscillation)是出現在工程、經濟及生物學中的現象。自激振荡的理論基礎是由亚历山大·安德罗诺夫在1928年提出。.

新!!: 控制理论和自激振荡 · 查看更多 »

自我組織

自我組織,也称自组织,是一系統內部組織化的過程,通常是一開放系統,在沒有外部來源引導或管理之下會自行增加其複雜性。 自组织是从最初的无序系统中各部分之间的局部相互作用,产生某种全局有序或协调的形式的一种过程。这种过程是自发产生的,它不由任何中介或系统内部或外部的子系统所主导或控制。.

新!!: 控制理论和自我組織 · 查看更多 »

自整定

在控制理论中,自整定(self-tuning)可以在滿足最大化或是最小化的情形下,將其內部運行參數進行最佳化,一般會是進行的最大化,或是錯誤的最小化。 自整定及自動整定(auto-tuning)有時會指同一個概念,許多軟體研究群體認為auto-tuning是較正確的名詞。不過在變頻器領域中,自動整定(auto-tuning)有時只是馬達參數自學習,利用測試信號及演算法量測馬達參數,不一定包括內部運行參數的最佳化。 自整定系統一般會包括非線性自适应控制。數十年以來,自整定系統已經是航太產業中的標誌,這類的反饋在非線性過程的非常重要。在電信產業中,常使用,其中會動態的調整系統參數,讓效率及強健性都可以最大化。.

新!!: 控制理论和自整定 · 查看更多 »

離心式調速器

離心式調速器,又稱瓦特調速器或飛球調速器。英國工程師詹姆斯·瓦特於1788年為他的商業搭檔馬修·博爾頓的蒸汽機速度控制而設計。瓦特從沒有把此裝置申請發明,因為自從17世紀開始,離心式調速器已被用作监察風車和風車磨石之間的距離及壓力,所以一般大眾認為的瓦特發明了此裝置是錯誤的。 實物是一個錐擺結構連接至蒸汽機閥門,利用負反饋的原理控制蒸汽機的運行速度。這也是第一個自動控制系統。.

新!!: 控制理论和離心式調速器 · 查看更多 »

電阻溫度計

電阻溫度計,也稱為電阻溫度探測器(RTDs),是一種使用已知電阻隨溫度變化特性的材料所製成溫度傳感器。因為他們幾乎無一例外地由鉑製造而成,所以他們通常被稱為鉑電阻溫度計。在許多低於600℃的工業應用場合,他們正在慢慢地取代了熱電偶。.

新!!: 控制理论和電阻溫度計 · 查看更多 »

H infinity迴路函數整形

#重定向 H-infinity迴路成形.

新!!: 控制理论和H infinity迴路函數整形 · 查看更多 »

H-infinity控制

H∞(H-infinity)控制法是控制理論中用來設計控制器,可以達到穩定性,並且可以保證性能的設計方式。要使用H∞方法,控制器的設計者需將控制問題表示為數學最佳化問題,並且找到使最佳化成立的控制器。 H∞較傳統控制技術好的優點是可以應用在包括多個變數,各頻道之間有互相耦合的問題,而H∞的缺點是其因為技巧以及其中的數學,若要成功的應用,需要對需控制的系統有很好的建模。很重要的是所得的控制器只是在規定的成本函數下是最佳的,若用一般評估控制器性能方式來評比(例如整定時間、使用能量等),不一定是最佳的。而且像飽和之類的非線性特性也很不好處理。H∞是在1970年代末及1980年代初由(靈敏度最小化、sensitivity minimization)、J.

新!!: 控制理论和H-infinity控制 · 查看更多 »

MIMO

多输入多输出(Multi-input Multi-output; MIMO)是一种用來描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立發送信号,同时在接收端用多个天线接收並恢复原信息。该技术最早是由马可尼于1908年提出的,他利用多天线来抑制信道衰落(fading)。根据收发两端天线数量,相对于普通的单输入单输出系统(Single-Input Single-Output,SISO),MIMO此類多天線技術尚包含早期所謂的「智慧型天線」,亦即单输入多输出系统(Single-Input Multi-Output,SIMO)和多输入单输出系统(Multiple-Input Single-Output,MISO)。 由於MIMO可以在不需要增加頻寬或總發送功率耗損(transmit power expenditure)的情況下大幅地增加系統的資料吞吐量(throughput)及傳送距離,使得此技術於近幾年受到許多矚目。MIMO的核心概念為利用多根發射天線與多根接收天線所提供之空間自由度來有效提升無線通訊系統之頻譜效率,以提升傳輸速率並改善通訊品質。.

新!!: 控制理论和MIMO · 查看更多 »

PID控制器

PID控制器(比例-积分-微分控制器),由比例单元(P)、积分单元(I)和微分单元(D)组成。透过Kp,Ki和Kd三个参数的设定。PID控制器主要适用于基本上线性,且动态特性不随时间变化的系统。 PID控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。PID控制器可以根据历史数据和差别的出现率来调整输入值,使系统更加准确而稳定。 PID控制器的比例单元(P)、积分单元(I)和微分单元(D)分別對應目前誤差、過去累計誤差及未來誤差。若是不知道受控系統的特性,一般認為PID控制器是最適用的控制器。藉由調整PID控制器的三個參數,可以調整控制系統,設法滿足設計需求。控制器的響應可以用控制器對誤差的反應快慢、控制器過衝的程度及系統震盪的程度來表示。不過使用PID控制器不一定保證可達到系統的最佳控制,也不保證系統穩定性。 有些應用只需要PID控制器的部份單元,可以將不需要單元的參數設為零即可。因此PID控制器可以變成PI控制器、PD控制器、P控制器或I控制器。其中又以PI控制器比較常用,因為D控制器對回授雜訊十分敏感,而若沒有I控制器的話,系統不會回到參考值,會存在一個誤差量。.

新!!: 控制理论和PID控制器 · 查看更多 »

Z轉換

在數學和信号处理中,Z轉換(Z-transform)把一連串離散的實數或複數訊號,從時域轉為复頻域表示。 可以把它认为是拉普拉斯变换的离散时间等价。在时标微积分中会探索它们的相似性.

新!!: 控制理论和Z轉換 · 查看更多 »

极点 (复分析)

亚纯函数的极点是一种特殊的奇点,它的表现如同z-a.

新!!: 控制理论和极点 (复分析) · 查看更多 »

控制工程

控制工程(Control engineering)是有关控制理论研究与应用的一门工程学。控制系统的实现通常基于传感器的使用,它可以测量被控制设备的性能参数,然后收集到的数据以反馈的形式施加到执行器上,使得执行器输出一定的信号,确保系统工作在预期的状态。工程师可以设计无需人介入、可以自适应、自动修正误差的设备系统,这种系统被称为“自动控制”,例如汽车的巡航定速系统。控制工程在本质上是一个交叉学科,而描述系统行为的数学模型则又是重中之重。.

新!!: 控制理论和控制工程 · 查看更多 »

控制器

在控制論中,控制器(controller)是一依據傳感器信號,來調整發送至致動器的輸出信號,用以改變受控體(plant)狀況的裝置。舉例來說,屋內的空調系統可用溫度控制器,依據溫度計測量的氣溫,以調整冷氣機強度,以達到一個舒適的環境溫度。.

新!!: 控制理论和控制器 · 查看更多 »

控制论

控制论是一门跨学科研究, 它用于研究控制系统的结构,局限和发展。在21世纪,控制论的定义变得更加宽泛,主要用于指代“对任何使用科学技术的系统的控制”。由于这一定义过于宽泛,许多相关人士不再使用“控制论”一词。 控制论与对系统的研究有关,如自动化系统、物理系统、生物系统、认知系统、以及社会系统等等。控制论可被应用于研究包含信令回路的系统。信令回路在这里指,当一个系统的运作改变了它所在的环境,而这些改变又反过来反馈于系统上,并导致系统本身的变化。这种循环最初被称为“循环影响”关系。.

新!!: 控制理论和控制论 · 查看更多 »

李雅普诺夫稳定性

在数学和自动控制领域中,李雅普诺夫稳定性(Lyapunov stability,或李亞普诺夫稳定性)可用來描述一個动力系统的穩定性。如果此动力系统任何初始條件在 x_0 附近的軌跡均能維持在 x_0 附近,那么该系统可以称为在x_0處李雅普诺夫稳定。 若任何初始條件在 x_0 附近的軌跡最後都趨近x_0,那么该系统可以称为在x_0處漸近稳定。指數穩定可用來保證系統最小的衰減速率,也可以估計軌跡收斂的快慢。 李雅普诺夫稳定性可用在線性及非線性的系統中。不過線性系統的穩定性可由其他方式求得,因此李雅普诺夫稳定性多半用來分析非線性系統的穩定性。李亞普诺夫稳定性的概念可以延伸到無限維的流形,即為結構穩定性,是考慮微分方程中一群不同但「接近」的解的行為。輸入-狀態穩定性(ISS)則是將李雅普诺夫稳定性應用在有輸入的系統。.

新!!: 控制理论和李雅普诺夫稳定性 · 查看更多 »

根軌跡圖

根軌跡圖(root locus)是控制理論及中,繪圖分析的方式,可以看到在特定參數(一般會是回授系統的环路增益)變化時,系統極點的變化。根軌跡圖是由所發展的技巧,是中的稳定性判据,可以判斷線性非時變系統是否穩定。 根軌跡圖是在複數s-平面中,系統閉迴路傳遞函數的极点隨著增益參數的變化(參照)。.

新!!: 控制理论和根軌跡圖 · 查看更多 »

概率论

概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).

新!!: 控制理论和概率论 · 查看更多 »

模型預測控制

模型預測控制(Model predictive control、MPC)是过程控制中,在滿足特定限制條件的下控制過程的進階控制方式,自1980年代起已用在化學工廠及煉油廠的工業過程中。近年來也用在電力系統的平衡模型以及电力电子学中。模型預測控制是以過程的動態模型為基礎,多半是透過得到的線性模型。模型預測控制的特點是每一次針對目前的時間區塊內作最佳化,然後下一個時間再針對時間區塊內作最佳化,這和LQR控制器不同。模型預測控制可以預測未來事件並且進行對應的處理。PID控制器沒有這樣的預測功能。模型預測控制幾乎都是用數位控制來實現,不過也有研究指出若使用特殊設計的類比電路,其反應時間可以更快。 广义预测控制(Generalized predictive control,簡稱GPC)以及动态矩阵控制(dynamic matrix control,簡稱DMC)都是典型模型預測控制的例子。.

新!!: 控制理论和模型預測控制 · 查看更多 »

模式預測控制

#重定向 模型預測控制.

新!!: 控制理论和模式預測控制 · 查看更多 »

模糊逻辑

模糊逻辑是处理部分真实概念的布林運算扩展。经典逻辑坚持所有事物(陈述)都可以用二元项(0或1,黑或白,是或否)来表达,而模糊逻辑用真实度替代了布尔真值。这些陈述表示实际上接近于日常人们的问题和語意陈述,因为“真实”和结果在多数时候是部分(非二元)的和/或不精确的(不准确的,不清晰的,模糊的)。 真实度经常混淆于概率。但是它们在概念上是不一样的;模糊真值表示在模糊定义的集合中的成员歸屬关系,而不是某事件或条件的可能度(likelihood)。要展示这种区别,考虑下列情节:Bob在有两个毗邻的屋子的房子中:厨房和餐厅。在很多情况下,Bob的状态是在事物“在厨房中”的集合内是完全明确的:他要么“在厨房中”要么“不在厨房中”。但Bob站在门口的时候怎么办呢?它可被认为是“部分的在厨房中”。量化这个部分陈述产生了一个模糊集合成员关系。比如,只有他的小脚趾在餐厅,我们可以说Bob是0.01“在厨房中”。只要Bob站在了门口,就没有事件(如抛硬币)能解决他完全的“在厨房中”或“不在厨房中”。模糊集合是基于集合的模糊定义而不是随机性。 模糊逻辑允许在包含0和1的它们之间集合成员关系值,同于黑和白之间的灰色,在它的语言形式中,有不精确的概念如"稍微"、"相当"和"非常"。特别是,它允许在集合中的部分成员关系。它有关于模糊集合和可能性理论。它是1965年卢菲特·泽德教授在加州大学伯克利分校介入的。 模糊逻辑尽管被广泛接受却是有争议的:它被某些控制工程师出于有效性和其他原因,和一些坚持概率论是不确定性的唯一严格描述的统计学家所拒绝。批評者認為它不是普通集合论的超集,因为成员函数是依据常规集合而定义的。.

新!!: 控制理论和模糊逻辑 · 查看更多 »

樹 (資料結構)

#重定向 树 (数据结构).

新!!: 控制理论和樹 (資料結構) · 查看更多 »

正向系統

正向系統(Positive systems)是指一種系統,在給定正的初始值下,其狀態變數不會是負的。在一些實務應用中常會用到正向系統,因為這些變數表示實際的物理量,而這些物理量(如濃度、水位、高度等)不會為負值。 正向系統在的設計中相當重要。在狀態觀測器設計中也需考慮系統是否是正向系統,因為狀態觀測器可能會出現不合理的負值。.

新!!: 控制理论和正向系統 · 查看更多 »

比例控制

比例控制系統是線性的回授,像浴室抽水馬桶的及離心式調速器都是經典的比例控制系統。 比例控制系統比雙金屬自動調溫器的開關控制要複雜,但比類似車輛巡航定速的PID控制要簡單。若系統的響應時間較長,可以用開關控制來控制,但若響應時間短,可能會造成系統的不穩定。比例控制系統會將輸出調變處理,或是配合像連續控制閥等裝置,使輸出不致於有不連續的變化。 開關控制可以類比於開車時將油門只考慮踩到底或是完全放空,然後調整其占空比來控制速度。當速度還沒到達理想速度,汽車有動力,當速度到達理想速度後,油門放空,車輛減速,當速度低於理想速度(一般會有一些遲滯現象),才會再提供所有動力給汽車。上述作法看似脈衝寬度調變(PWM),但因控制速度不夠快,最後的結果是控制性能不佳,速度有大幅的變化。引擎越有力,整車就越不穩定,汽車越重,整車就越穩定。穩定性和車輛的功率重量比有關。 比例控制類似大部份駕駛開車的方式,若車輛略超過目標速度,油門會稍微放鬆一些,使馬力減少,因此車輛會慢慢的減速,在減速過程也會根據車輛速度和目標速度的差,持續的調整油門,最後會接近目標值,其誤差比開關控制要小很多,而控制也平順許多。 比例控制可以再調昇為PID控制,可以針對像上下坡之類,相同速度下需要功率不同的條件進行處理,這就會根據PID控制中的積分器來補償。.

新!!: 控制理论和比例控制 · 查看更多 »

波德圖

波德圖(Bode plot,“Bode”的英文發音類似Boh-dee,荷蘭文的發音則類似Bow-dah),又名伯德图、波特图,是線性非時變系統的傳遞函數對頻率的半對數座標圖,其橫軸頻率以對數尺度表示,利用波德圖可以看出系統的頻率響應。波德圖一般是由二張圖組合而成,一張幅頻圖表示頻率響應增益的分貝值對頻率的變化,另一張相頻圖則是頻率響應的相位對頻率的變化。 波德圖可以用電腦軟體(如MATLAB)或儀器繪製,也可以自行繪製。利用波德圖可以看出在不同頻率下,系統增益的大小及相位,也可以看出大小及相位隨頻率變化的趨勢。 波德圖的圖形和系統的增益,極點、零點的個數及位置有關,只要知道相關的資料,配合簡單的計算就可以畫出近似的波德圖,這是使用波德圖的好處。.

新!!: 控制理论和波德圖 · 查看更多 »

滑動模式控制

滑動模式控制(sliding mode)簡稱SMC,是一種的技術,利用不連續的控制信號來調整非線性系統的特性,強迫系統在二個系統的正常狀態之間滑動,最後進入穩態。其狀態-反饋控制律不是時間的連續函數。相反的,控制律會依目前在狀態空間中的位置不同,可能從一個連續的控制系統切換到另一個連續的控制系統。因此滑動模型控制屬於。已針對滑動模型控制設計了許多的控制結構,目的是讓相空間圖中的軌跡可以前往和另一個控制結構之間相鄰的區域,因此最終的軌跡不會完全脫離某個控制結構。相反的,軌跡會在控制結構的邊界上「滑動」。這種沿著控制結構之間邊界滑動的行為稱為「滑動模式」而包括邊界在內的幾何轨迹稱為滑動曲面(sliding surface)。在現代控制理論的範圍中,任何變結構系統(例如滑動模式控制)都可以視為是的特例,因為系統有些時候會在連續的狀態空間中移動,也時也會在幾個離散的控制模式中切換。.

新!!: 控制理论和滑動模式控制 · 查看更多 »

机器学习

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。 机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。.

新!!: 控制理论和机器学习 · 查看更多 »

机器人学

機器人學(robotics)是一項涵蓋了機器人的設計、建造、運作、以及應用的跨領域科技,就如同電腦系統之控制、感測回授、以及資訊處理。這些科技催生出能夠取代人力的自動化機器,在危險境或製造工廠運作,或塑造成外表、行為、心智的仿人機器人。如今許多的機器人受到自然界的啟發,貢獻於生物啟發的機器人學的領域。 創造可自動運轉的機器的概念可追溯至古典時代,但是直到20世紀以前,機器人的功能和潛在應用開發及研究沒有持續地成長。縱觀歷史,機器人常見於模仿人類行為,且常以類似的方法管理事務。時至今日,機器人學成為一個快速成長的領域,同時先進技術持續地研發、設計、以及建造用來達成各種實用目的新款機器人,例如、工業機器人或軍用機器人。許多機器人從事對人類來講非常危險的工作,如拆除炸彈、地雷、探索沉船等。机器人学还被用于STEM教育(科学Science, 技术Technology, 工程Engineering, 和数学Mathematics) 作为教学辅助。.

新!!: 控制理论和机器人学 · 查看更多 »

机翼

机翼是为固定翼航空器(包括飞机和滑翔机)提供升力的主要部件,模仿鳥類的翅膀,維持其在空中的穩定飛行以及提供必要的操纵力。机翼上通常安装有固定翼航空器的主操纵面-副翼,以及辅助操纵装置襟翼。.

新!!: 控制理论和机翼 · 查看更多 »

有界輸入有界輸出穩定性

在信號處理及控制理論中,有界輸入有界輸出穩定性簡稱BIBO穩定性,是一種針對有輸入信號線性系統的穩定性。BIBO是「有界輸入有界輸出」(Bounded-Input Bounded-Output)的簡稱,若系統有BIBO穩定性,則針對每一個有界的輸入,系統的輸出也都會有界,不會發散到無限大。 對於信號若存在有限的定值B > 0使得信號的振幅不會超過B,則此信號為有界的,也就是說.

新!!: 控制理论和有界輸入有界輸出穩定性 · 查看更多 »

最优控制

最优控制理论是要針對控制問題找到控制法則,可以滿足所要求的。 最优控制理论是变分法的推广,着重于研究使的指标达到最优化的条件和方法。这门学科的开创性工作主要是由1950年代前苏联的庞特里亚金和美国的贝尔曼所完成,這些是以所發展的变分法為其基礎。最优控制可以視為是控制理論中的一種控制策略。.

新!!: 控制理论和最优控制 · 查看更多 »

方塊圖

塊圖(block diagram)是有關系統的,其中的主要機能或是零件用方塊表示,方塊之間有線連接,表示各方塊之間的關係.

新!!: 控制理论和方塊圖 · 查看更多 »

时不变系统

非時變系統是输出不會直接隨著时间变化的系统。 如果系统的传递函数不是时间的函数,就可以满足这个特性。这个特性也可以用示意图的术语进行描述.

新!!: 控制理论和时不变系统 · 查看更多 »

时标微积分

在数学中,时标微积分是差分方程和微分方程的一种统一。时标微积分最初由德国数学家Stefan Hilger发明,应用于需要同时包含离散和连续的情况的模型的领域中。它为导数赋予了新的定义,使得如果你对定义在实数中的闭区间上的函数进行求导,就等价于通常意义上的导数;然而如果你将这种新定义的导数作用于定义在整数集上的函数,则它就等价于前移差分算子。.

新!!: 控制理论和时标微积分 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

新!!: 控制理论和数学 · 查看更多 »

數位控制

數位控制(Digital control)是控制理论中的一種,利用數位電子計算機作為控制器。 數位控制系統可以是单片机、特殊應用積體電路(ASIC),也可以是標準的桌上型電腦,依需求而定。 數位控制系統屬於离散系統,其中會用Z轉換代替拉普拉斯变换。而數位電腦的精度是有限的(參見量化),因此需額外考慮係數的誤差、類比數位轉換器、數位類比轉換器是否會造成非預期的影響。 第一台數位電腦阿塔纳索夫-贝瑞计算机在1940年代初問世,現今的數位電腦價格和之前相比有大幅的下降。數位電腦因為以下原因成為控制系統中的關鍵元件。.

新!!: 控制理论和數位控制 · 查看更多 »

拉普拉斯变换

拉普拉斯变换(Laplace transform)是应用数学中常用的一种积分变换,又名拉氏轉換,其符號為 \displaystyle\mathcal \left\。拉氏變換是一個線性變換,可將一個有引數實數 t(t \ge 0) 的函數轉換為一個引數為複數 s 的函數: 拉氏變換在大部份的應用中都是對射的,最常見的 f(t) 和 F(s) 組合常印製成表,方便查閱。拉普拉斯变换得名自法國天文學家暨數學家皮埃尔-西蒙·拉普拉斯(Pierre-Simon marquis de Laplace),他在機率論的研究中首先引入了拉氏變換。 拉氏變換和傅里叶变换有關,不過傅里叶变换將一個函數或是信號表示為許多弦波的疊加,而拉氏變換則是將一個函數表示為許多矩的疊加。拉氏變換常用來求解微分方程及積分方程。在物理及工程上常用來分析線性非時變系統,可用來分析電子電路、諧振子、光学仪器及機械設備。在這些分析中,拉氏變換可以作時域和頻域之間的轉換,在時域中輸入和輸出都是時間的函數,在頻域中輸入和輸出則是複變角頻率的函數,單位是弧度每秒。 對於一個簡單的系統,拉氏變換提供另一種系統的描述方程,可以簡化分析系統行為的時間。像時域下的線性非時變系統,在頻域下會轉換為代數方程,在時域下的捲積會變成頻域下的乘法。.

新!!: 控制理论和拉普拉斯变换 · 查看更多 »

智能控制

智能控制是一种控制技术,针对控制对象及其环境、控制目标和任务的不确定性和复杂性而提出。智能控制可以自动测量被控对象的被控制量,并求出与期望值的偏差,同时采集输入环境的信息,进而根据所采集的输入信息和已有知识进行推理,得到对被控对象的输出控制,同时使偏差尽可能减小或消除。一般使用如下人工智能控制方法如類神經網路,模糊逻辑,机器学习,进化计算和遗传算法。.

新!!: 控制理论和智能控制 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »