我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

克卜勒223

指数 克卜勒223

克卜勒223(Kepler-223),舊稱KOI-730(KIC #10227020),是一個位於天鵝座的恆星。克卜勒太空望遠鏡已經在該恆星周圍發現4顆系外行星。.

目录

  1. 12 关系: 天文学家天文物理期刊太陽系外行星地球共軌組態克卜勒太空望遠鏡轨道共振J2000.0WebGL恒星拉格朗日点2微米全天巡天

  2. 克卜勒感興趣天體

天文学家

天文学家是研究天文学、宇宙学、天体物理学等相关学科的科学家。因为有些哲学家、物理学家、数学家对天文理论有着不可忽视的影响,所以下面的列表中也包括这些人。.

查看 克卜勒223和天文学家

天文物理期刊

天文物理期刊(The Astrophysical Journal)是在天文学及天体物理学領域重要的研究期刊,于1895年創刊,至2008年底都由美國芝加哥大學出版社發行;2009年1月起改由英國物理學會出版社發行。編輯部附屬美國天文學會之下,每月出版三冊,刊載的內容主要為最新的天文物理發展、發現、及学说。.

查看 克卜勒223和天文物理期刊

太陽系外行星

太陽系外行星或系外行星,指在太陽系之外的行星。截至2018年5月5日,已經被確認的系外行星總共有3767顆(另有超過2300顆尚未被確認),當中至少有77%是透過凌日現象發現的;這些行星分屬2816個行星系,其中有628個多行星系。克卜勒任務已經檢測到18,000顆行星候選者,包括262顆位於潛在適居帶的候選者。 在銀河系,估計有數十億顆恆星(若每顆恆星都至少有一顆行星,將導致有1,000億至4,000億顆行星),不只在恆星周圍有行星,也有自由移動的行星質量天體,而已知最靠近的系外行星是比鄰星b。 幾乎所有已經發現的系外行星都在我們自己的銀河系內,但是有少量的銀河系外行星可能可以被檢測出來。哈佛-史密松天體物理中心在2013年1月提出的一份報告中提到:估計在銀河系內「至少有170億顆」地球尺度的系外行星。 數百年來,許多哲學家和科學家都認為在太陽系以外應該也有行星的存在,但是沒有辦法知道行星有多普遍,或是與太陽系行星的相似度又是如何。在19世紀,許多的偵測方法被提出來,但最終所有的天文學家得到的結果都是否定的。第一個被確認的檢測出現在1992年,發現有幾顆質量類似地球的天體環繞著脈衝星PSR B1257+12。在主序帶恆星發現行星的第一個偵測結果出現在1995年,在鄰近的飛馬座51發現了以4天週期公轉一週的巨大行星。由於觀測技術的進步,自此之後偵測到的數量與效率迅速的增加。有些系外行星被大望遠鏡直接拍攝到影像,但絕大多數的系外行星都是經由徑向速度測量檢出的。除了系外行星,「系外彗星」(在太陽系之外的彗星)也被發現,也許在銀河系內也是很普遍的。 最常見的系外行星是巨大的行星,相信是類似於木星或海王星,但這也反應了取樣偏差,因為大質量的行星比較容易被觀察到。一些相對比較輕的系外行星,質量只有地球的幾倍(現在所謂的超級地球);如眾所周知,在統計上的研究表明它們的數量應該超過巨大的行星。雖然現在已經發現一小撮包括地球大小和更小的行星,似乎表現出其它的地球類似體屬性。也存在著有這行星質量的天體環繞著棕矮星和不受到恆星拘束在太空中自由移動的行星;然而,「行星」這個名詞尚未應用在這些天體上。 發現的太陽系外行星,特別是軌道位於適居帶,極有可能有液態水存在表面的那些行星(還因此可能有生命),提高了搜尋外星生命的興趣。因此,尋找太陽系外的行星還包括適居行星,在太陽系外的行星適合承載生命的研究中,被考慮的因素相當廣泛。 在2013年1月7日,來自克卜勒任務太空天文台的天文學家宣布發現了KOI-172.02,一顆像地球的系外行星候選者,在一顆類似太陽的恆星的適居帶中環繞著,可能是「存在著外星生命的主要候選者」。.

查看 克卜勒223和太陽系外行星

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

查看 克卜勒223和地球

共軌組態

共軌組態在天文學中是一種有著與其母體相同 (或常相似) 軌道距離天體的集合 (像是小行星、衛星或是行星)。共軌天體是處於1:1平均軌道共振。 特洛伊天體與大天體共享軌道,但是不會與母天體發生碰撞,因為它們的軌道環繞在兩個穩定的拉格朗日點,L4和L5,位於母天體軌道的前方60°和後方60° (特洛伊點)。 交換軌道是一對天體在相互接近時互換彼此的半長軸或軌道離心率。.

查看 克卜勒223和共軌組態

克卜勒太空望遠鏡

克卜勒任務(Kepler Mission)是美國國家航空暨太空總署設計來發現環繞著其他恆星之類地行星的太空望遠鏡。使用NASA發展的太空光度計,預計將花3.5年的時間,在繞行太陽的軌道上,觀測10萬顆恆星的光度,檢測是否有行星凌星的現象(以凌日的方法檢測行星)。為了尊崇德國天文學家-zh-cn:开普勒; zh-tw:克卜勒; zh-hk:開普勒-,這個任務被稱為克卜勒任務。 克卜勒是NASA低成本的發現計畫聚焦在科學上的任務。NASA的是這個任務的主管機關,提供主要的研究人員並負責地面系統的開發、任務的執行和科學資料的分析。克卜勒任務進度的處理是由噴射推進實驗室執行,負責克卜勒任務飛行系統的開發。 克卜勒太空船於2009年3月6日22:49:57UTC-5發射,已确认了130多个系外行星和发现了超过2700颗候选行星。 2013年5月15日,克卜勒太空望遠鏡由於反應輪故障,無法設定望遠鏡方向,因此被迫停止其搜尋系外行星任務。 同年8月15日,NASA宣布放棄兩個故障的反應輪,以替代計畫使用剩下兩個正常的反應輪重新開始工作。.

查看 克卜勒223和克卜勒太空望遠鏡

轨道共振

軌道共振是天體力學中的一種效應與現象,是當在軌道上的天體於週期上有簡單(小數值)的整數比時,定期施加的引力影響到對方所產生的。軌道共振的物理原理在概念上類似於推動兒童盪的鞦韆,軌道和擺動的鞦韆之間有著一個自然頻率,其它機制和“推”所做的動作週期性的重複施加,產生累積性的影響。軌道共振大大的增加了相互之間引力影響的機構,即它們能夠改變或限制對方的軌道。在多數的情況下,這導致“不穩定”的互動,在其中的兩者互相交換動能和轉移軌道,直到共振不再存在。在某些情況下,一個諧振系統可以穩定和自我糾正,所以這些天體仍維持著共振。例如,木星衛星佳利美德、歐羅巴、和埃歐軌道的1:2:4共振,以及冥王星和海王星之間的2:3共振。土星內側衛星的不穩定共振造成土星環中間的空隙。1:1的共振(有著相似軌道半徑的天體)在特殊的情況下,造成太陽系大天體將共享軌道的小天體彈射出去;這是清除鄰居最廣泛應用的機制,而此一效果也應用在目前的行星定義中。 除了拉普拉斯共振圖(見下文)中指出,在這篇文章中的共振比率應被解釋為在相同的時間間隔內完成軌道數的比例,而不是作為公轉週期比(其中將會呈反比關係)。上面2:3的比例意味著在冥王星完成兩次完整公轉的時間,海王星要完成三次完整的公轉。.

查看 克卜勒223和轨道共振

J2000.0

J2000.0是在天文学上使用的曆元,前缀「J」代表这是一个儒略纪元法,而不是一个贝塞耳纪元。 它指的是儒略日期TT时2451545.0,或是TT时2000年1月1日12時,即相对于TAI的2000年1月1日,11:59:27.816或UTC时间2000年1月1日11:58:55.816。 因恒星赤经和赤纬会因岁差(與恒星的自行)改变,所以天文学家们经常指定某一特定的纪元作参考点。早期採用的纪元标准是B1950.0纪元。 在J2000时刻的天赤道與二分点用来定义天球参考坐标系,该参考坐标系也可写作J2000坐标或简单记为J2000,但更合适的,应该如下使用国际天球参考系統(ICRS)。.

查看 克卜勒223和J2000.0

WebGL

WebGL是一種JavaScript API,用於在不使用外掛程式的情況下在任何相容的網頁瀏覽器中呈現交互式2D和3D圖形。WebGL完全整合到瀏覽器的所有網頁標準中,可將影像處理和效果的GPU加速使用方式當做網頁Canvas的一部分。WebGL元素可以加入其他HTML元素之中並與網頁或網頁背景的其他部分混合。WebGL程序由JavaScript編寫的控制代碼和OpenGL Shading Language(GLSL)編寫的著色器代碼組成,該語言類似於C或C++,並在電腦的圖形處理器(GPU)上執行。WebGL由非營利Khronos Group設計和維護。.

查看 克卜勒223和WebGL

恒星

恆星是一種天體,由引力凝聚在一起的一顆球型發光電漿體,太陽就是最接近地球的恆星。在地球的夜晚可以看見的其他恆星,幾乎全都在銀河系內,但由於距離非常遙遠,這些恆星看似只是固定的發光點。歷史上,那些比較顯著的恆星被組成一個個的星座和星群,而最亮的恆星都有專有的傳統名稱。天文學家組合成的恆星目錄,提供了許多不同恆星命名的標準。 至少在恆星生命的一段時期,恆星會在核心進行氫融合成氦的核融合反應,從恆星的內部將能量向外傳輸,經過漫長的路徑,然後從表面輻射到外太空。一旦核心的氫消耗殆盡,恆星的生命就即將結束。有一些恆星在生命結束之前,會經歷恆星核合成的過程;而有些恆星在爆炸前會經歷超新星核合成,會創建出幾乎所有比氦重的天然元素。在生命的盡頭,恆星也會包含簡併物質。天文學家經由觀測其在空間中的運動、亮度和光譜,確知一顆恆星的質量、年齡、金屬量(化學元素的豐度),和許多其它屬性。一顆恆星的總質量是恆星演化和決定最終命運的主要因素:恆星在其一生中,包括直徑、溫度和其它特徵,在生命的不同階段都會變化,而恆星周圍的環境會影響其自轉和運動。描繪眾多恆星的溫度相對於亮度的圖,即赫羅圖(H-R圖),可以讓我們測量一顆恆星的年齡和演化的狀態。 恆星的生命是由氣態星雲(主要由氫、氦,以及其它微量的較重元素所組成)引力坍縮開始的。一旦核心有了足夠的密度,氫融合成氦的核融合反應就可以穩定的持續進行,釋放過程中產生的能量。恆星內部的其它部分會進行組合,形成輻射層和對流層,將能量向外傳輸;恆星內部的壓力能防止其因自身的重力繼續向內坍縮。一旦耗盡了核心的氫燃料,質量大於0.4太陽質量的恆星,會膨脹成為一顆紅巨星,在某些情況下,在核心或核心周圍的殼層會融合成更重的元素。然後這顆恆星會演化出簡併型態,並將一些物質回歸至星際空間的環境中。這些釋放至間中的物質有助於形成新一代的恆星,它們會含有比例較高的重元素。與此同時,核心成為恆星殘骸:白矮星、中子星、或黑洞(如果它有足夠龐大的質量)。 聯星和多星系統包含兩顆或更多受到引力束縛的恆星,通常彼此都在穩定的軌道上各自運行著。當這樣的兩顆恆星在相對較近的軌道上時,其间的引力作用可以對它們的演化產生重大的影響。恆星可以構成更巨大的引力束縛結構,像是星團或是星系。.

查看 克卜勒223和恒星

拉格朗日点

拉格朗日点(Lagrangian point)又称平动点(libration points)在天体力学中是限制性三体问题的五个特殊解(particular solution)。就平面圆型三体问题,1767年数学家欧拉根据旋转的二体引力场推算出其中三个点(特解)為L1、L2、L3,1772年数学家拉格朗日推算出另外两个点(特解)為L4、L5。例如,两个天体环绕运行,在空间中有五个位置可以放入第三个物体(质量忽略不计),并使其保持在两个天体的相应位置上。理想状态下,两个同轨道物体以相同的周期旋转,两个天体的万有引力与离心力在拉格朗日点平衡,使得第三个物体与前两个物体相对静止。.

查看 克卜勒223和拉格朗日点

2微米全天巡天

2微米全天巡天(Two Micron All-Sky Survey)(2MASS)的工作開始於1997年,完成於2001年。使用的兩架望遠鏡,分別位於北半球美國亞利桑那州的霍普金斯山和南半球智利托洛洛山美洲际天文台,以確保能觀測到全部的天空。這是迄今最雄心勃勃的巡天計畫,經過整理的最後數據已經在2003年公佈。全部的天空都使用紅外線的2微米鄰近的3個波段:J (1.25μm), H(1.65μm),和Ks(2.17μm)完成掃描的工作。 這次巡天的目的包括:.

查看 克卜勒223和2微米全天巡天

另见

克卜勒感興趣天體