目录
微分几何
微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。 古典微分几何起源于微积分,主要内容为曲线论和曲面论。歐拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。.
查看 信息几何和微分几何
信息论
信息论(information theory)是应用数学、電機工程學和计算机科学的一个分支,涉及信息的量化、存储和通信等。信息论是由克劳德·香农发展,用来找出信号处理与通信操作的基本限制,如数据压缩、可靠的存储和数据传输等。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学、进化论和分子编码的功能、生态学的模式选择、热物理、量子计算、语言学、剽窃检测、模式识别、异常检测和其他形式的数据分析。 熵是信息的一个关键度量,通常用一条消息中需要存储或传输一个的平均比特数来表示。熵衡量了预测随机变量的值时涉及到的不确定度的量。例如,指定擲硬幣的结果(两个等可能的结果)比指定掷骰子的结果(六个等可能的结果)所提供的信息量更少(熵更少)。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。 信息论的基本内容的应用包括无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)、信道编码(如DSL))。这个领域处在数学、统计学、计算机科学、物理学、神经科学和電機工程學的交叉点上。信息论对航海家深空探测任务的成败、光盘的发明、手机的可行性、互联网的发展、语言学和人类感知的研究、对黑洞的了解,以及许多其他领域都影响深远。信息论的重要子领域有信源编码、信道编码、算法复杂性理论、算法信息论、資訊理論安全性和信息度量等。.
查看 信息几何和信息论
神经网络
经网络可以指:.
查看 信息几何和神经网络
统计学
统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.
查看 信息几何和统计学
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
查看 信息几何和量子力学
控制理论
控制理論是工程學與數學的跨領域分支,主要處理在有輸入信號的動力系統的行為。系統的外部輸入稱為「參考值」,系統中的一個或多個變數需隨著參考值變化,控制器處理系統的輸入,使系統輸出得到預期的效果。 控制理論一般的目的是藉由控制器的動作讓系統穩定,也就是系統維持在設定值,而且不會在設定值附近晃動。 連續系統一般會用微分方程來表示。若微分方程是線性常係數,可以將微分方程取拉普拉斯轉換,將其輸入和輸出之間的關係用傳遞函數表示。若微分方程為非線性,已找到其解,可以將非線性方程在此解附近進行線性化。若所得的線性化微分方程是常係數的,也可以用拉普拉斯轉換得到傳遞函數。 傳遞函數也稱為系統函數或網路函數,是一個數學表示法,用時間或是空間的頻率來表示一個線性常係數系統中,輸入和輸出之間的關係。 控制理论中常用方塊圖來說明控制理论的內容。.
查看 信息几何和控制理论
概率论
概率论(Probability theory)是集中研究概率及随机现象的数学分支,是研究隨機性或不確定性等現象的數學。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及輪盤等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。 作为统计学的数学基础,概率论对诸多涉及大量数据定量分析的人类活动极为重要,概率论的方法同样适用于其他方面,例如是对只知道系统部分状态的复杂系统的描述——统计力学,而二十世纪物理学的重大发现是以量子力学所描述的原子尺度上物理现象的概率本质。 數學家和精算師認為概率是在0至1閉區間内的數字,指定給一發生與失敗是隨機的「事件」。概率P(A)根據概率公理來指定給事件A。 一事件A在一事件B確定發生後會發生的概率稱為B給之A的條件概率;其數值為。若B給之A的條件概率和A的概率相同時,則稱A和B為獨立事件。且A和B的此一關係為對稱的,這可以由一同價敘述:「當A和B為獨立事件時,P(A \cap B).
查看 信息几何和概率论