徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

信号 (信息论)

指数 信号 (信息论)

在通讯系统、信号处理或者电子工程等技术领域中,信号是“传递有关一些现象的行为或属性的信息的函数。” 在现实世界中,任何随时间或者空间变化的量(如影像)都是潜在的信号,它们可能会提供一个物理系统的状态信息,或在不同观察者之间传达消息等。《IEEE信号处理汇刊》阐述“信号”一词如下: 信号的其他例子如传递温度信息的热电偶输出,传递酸度信息的pH计输出。 一般来说,信号通常由传感器提供,而且通常用换能器将能量从原始形式转换为其他形式。例如,麦克风的声学信号转换为电压波形,而一个扬声器做相反的事情。.

27 关系: 声音位置信号处理信噪比信息信息论函数图像离散时间信号线性时不变系统理论热电偶电子工程电气电子工程师学会熵 (信息论)畫面頻域频率响应频谱视频訊息运动雜訊PH计换能器时间数字信号数字信号处理

声音

聲音是振動產生的聲波,通過介質(空氣或固体、液体)傳播并能被人或動物聽覺器官所感知的波動現象。 聲音的頻率一般會以赫兹表示,記為Hz,指每秒鍾周期性震動的次數。而分貝是用来表示聲音强度的单位,記為dB。.

新!!: 信号 (信息论)和声音 · 查看更多 »

位置

位置可以指:.

新!!: 信号 (信息论)和位置 · 查看更多 »

信号处理

在计算机科学、药物分析、电子学等学科中,信号处理(signal processing)是指对信号表示、变换、运算等进行处理的过程。 信号处理可以用于沟通人类之间,或人与机器之间的联系;用以探测我们周围的环境,并揭示出那些不易观察到的状态和构造细节,以及用来控制和利用能源与信息.例如,我们可能希望分开两个或多个多少有些混在一起的信号,或者想增强信号模型中的某些成分或参数。 几十年来,信号处理在诸如语音与資料通訊、生物医学工程、声学、声呐、雷达、地震、石油勘探、仪器仪表、机器人、日用电子产品以及其它很多的这样一些广泛的领域内起着关键的作用。.

新!!: 信号 (信息论)和信号处理 · 查看更多 »

信噪比

信噪比(Signal-to-noise ratio,缩写为SNR或S/N)是科学和工程中所用的一种度量,用於比較所需訊號的强度與背景雜訊的强度。其定義為訊號功率与雜訊功率的比率,以分貝(dB)为单位表示。大於比率1:1(高於0分貝)表示訊號多於雜訊。信噪比通常用於描述電子訊號,也可以應用在各種形式的訊號,比如內的同位素量,或細胞間的生物化學信號。.

新!!: 信号 (信息论)和信噪比 · 查看更多 »

信息

信息(英語:Information),又稱情報,是一个严谨的科学术语,其定义不统一,是由它的极端复杂性决定的,獲取信息的主要方法為六何法。信息的表现形式多不胜数:声音、图片、温度、体积、颜色……信息的类別也不计其数:电子信息、财经信息、天气信息、生物信息……。 在熱力學中,信息是指任何會影響系統的熱力學狀態的事件。 信息可以減少不確定性。事件的不確定性是以其發生機率來量測,發生機率越高,不確定性越低,事件的不確定性越高,越需要額外的信息減少其不確定性。位元是典型的,但也可以使用像納特之類的單位,例如投擲一個公正的硬幣,其信息為log2(2/1).

新!!: 信号 (信息论)和信息 · 查看更多 »

信息论

信息论(information theory)是应用数学、電機工程學和计算机科学的一个分支,涉及信息的量化、存储和通信等。信息论是由克劳德·香农发展,用来找出信号处理与通信操作的基本限制,如数据压缩、可靠的存储和数据传输等。自创立以来,它已拓展应用到许多其他领域,包括统计推断、自然语言处理、密码学、神经生物学、进化论和分子编码的功能、生态学的模式选择、热物理、量子计算、语言学、剽窃检测、模式识别、异常检测和其他形式的数据分析。 熵是信息的一个关键度量,通常用一条消息中需要存储或传输一个的平均比特数来表示。熵衡量了预测随机变量的值时涉及到的不确定度的量。例如,指定擲硬幣的结果(两个等可能的结果)比指定掷骰子的结果(六个等可能的结果)所提供的信息量更少(熵更少)。 信息论将信息的传递作为一种统计现象来考虑,给出了估算通信信道容量的方法。信息传输和信息压缩是信息论研究中的两大领域。这两个方面又由信道编码定理、信源-信道隔离定理相互联系。 信息论的基本内容的应用包括无损数据压缩(如ZIP文件)、有损数据压缩(如MP3和JPEG)、信道编码(如DSL))。这个领域处在数学、统计学、计算机科学、物理学、神经科学和電機工程學的交叉点上。信息论对航海家深空探测任务的成败、光盘的发明、手机的可行性、互联网的发展、语言学和人类感知的研究、对黑洞的了解,以及许多其他领域都影响深远。信息论的重要子领域有信源编码、信道编码、算法复杂性理论、算法信息论、資訊理論安全性和信息度量等。.

新!!: 信号 (信息论)和信息论 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

新!!: 信号 (信息论)和函数 · 查看更多 »

图像

图像是人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜及显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 与图像相关的话题包括图像采集、图像制作、图像分析和图像处理等。 图像分為静態影像,如圖片、照片等,和动態影像,如影片等兩種。 图像是一種視覺符號。透過專業設計的圖像,可以發展成人與人溝通的視覺語言,也可以是了解族群文化與歷史源流的史料。世界美術史中大量的平面繪畫、立體雕塑與建築,也可視為人類由古自今文明發展的圖像文化資產。.

新!!: 信号 (信息论)和图像 · 查看更多 »

离散时间信号

离散时间信号的(时间)自变量仅在离散时刻有定义。大多数离散时间信号是由对连续时间信号采样得到的。取值上可以仍然取连续值。 信号可以以时间序列表示。对于一维信号,以两个向量方式表示,例如 更高维的信号也可以用多维向量表示。.

新!!: 信号 (信息论)和离散时间信号 · 查看更多 »

线性时不变系统理论

线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。.

新!!: 信号 (信息论)和线性时不变系统理论 · 查看更多 »

热电偶

热电偶(Thermocouple)是一种被广泛应用的温度传感器,也被用来将热势差转换为电势差。它的价格低廉、易于更换,且有标准接口,具有很大的温度量程。主要的局限是精度,小于1摄氏度的系统误差通常较难达到。 1821年,德国-爱沙尼亚物理学家发现任何导体(金属)被施加热梯度时都会产生电压。现在这种现象被称为熱電效應或「Seebeck效应」。若要测量这个电压,必须把“热”端连到另一导体上。增加的导体也会经历热梯度,自身也会产生一个电压,并与原来的电压抵消。 幸运的是,热电效应中电压的大小取决于金属的种类。在电路中使用不同的金属会产生不同的电压,这个电压被称为热电势,因此存在一个很小的电压差值可以被测量,这个差值随温度的升高而增大。对于目前常用的金属组合,这个差值通常在1到大约70微伏每摄氏度之间。一些常用的固定组合成为工业标准,如选择热电偶类型时通常考虑到成本、适用、便利、熔点、化学性质、稳定性和输出。由於熱電偶產生的電壓很小,很多的應用是利用熱電偶堆。.

新!!: 信号 (信息论)和热电偶 · 查看更多 »

电子工程

电子工程學(electronic engineering),是利用电子活动和效应的科学知识来设计、开发以及测试设备、系统或装备的一门工程学科。电子工程表示一个广泛的工程领域,覆盖了很多子领域,包括仪器工程、通信、半导体电路设计等等。 电子工程的应用形式涵盖了电动设备以及运用了控制技术、测量技术、调整技术、计算机技术,直至信息技术的各种电动开关。.

新!!: 信号 (信息论)和电子工程 · 查看更多 »

电气电子工程师学会

電機電子工程師學會(Institute of Electrical and Electronics Engineers,簡稱為IEEE,英文读作“i triple e”)是一个建立於1963年1月1日的国际性电子技术与电子工程师协会,亦是世界上最大的专业技术组织之一,擁有來自175個國家的36萬會員。 除設立於美國紐約市的總部以外,亦在全球150多個國家擁有分會,並且還有35個專業學會及2個聯合會。其每年均會發表多種雜誌、學報、書籍,亦舉辦至少300次的專業會議。 目前IEEE在工業界所定義的標準有著極大的影響。.

新!!: 信号 (信息论)和电气电子工程师学会 · 查看更多 »

熵 (信息论)

在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被稱為信息熵、信源熵、平均自信息量。这里,“消息”代表来自分布或数据流中的事件、样本或特征。(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。)来自信源的另一个特征是样本的概率分布。这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息。由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的。事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵)。熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底。 采用概率分布的对数作为信息的量度的原因是其可加性。例如,投掷一次硬币提供了1 Sh的信息,而掷m次就为m位。更一般地,你需要用log2(n)位来表示一个可以取n个值的变量。 在1948年,克劳德·艾尔伍德·香农將熱力學的熵,引入到信息论,因此它又被稱為香农熵。.

新!!: 信号 (信息论)和熵 (信息论) · 查看更多 »

畫面

#重定向 视频.

新!!: 信号 (信息论)和畫面 · 查看更多 »

頻域

在電子學、控制系統及統計學中,頻域(frequency domain)是指在對函數或信號進行分析時,分析其和頻率有關部份,而不是和時間有關的部份,和時域一詞相對。 函數或信號可以透過一對數學的運算子在時域及頻域之間轉換。例如傅里葉變換可以將一個時域信號轉換成在不同頻率下對應的振幅及相位,其頻譜就是時域信號在頻域下的表現,而反傅里葉變換可以將頻譜再轉換回時域的信號。.

新!!: 信号 (信息论)和頻域 · 查看更多 »

频率响应

频率响应(Frequency response,简称频响)是当向电子仪器系统输入一个振幅不变,频率变化的信号时,测量系统相對输出端的响应。通常与电子放大器、扩音器等联系在一起,频响的主要特性可用系统响应的幅度(用分贝)和相位(用弧度)来表示。.

新!!: 信号 (信息论)和频率响应 · 查看更多 »

频谱

頻譜是指一個時域的信號在頻域下的表示方式,可以針對信號進行傅立葉變換而得,所得的結果會是以分別以振幅及相位為縱軸,頻率為橫軸的兩張圖,不過有時也會省略相位的資訊,只有不同頻率下對應振幅的資料。有時也以「振幅頻譜」表示振幅隨頻率變化的情形,「相位頻譜」表示相位隨頻率變化的情形 。 簡單來說,頻譜可以表示一個訊號是由哪些頻率的弦波所組成,也可以看出各頻率弦波的大小及相位等資訊。.

新!!: 信号 (信息论)和频谱 · 查看更多 »

视频

影片又稱--(videogram, videogramme、vidéogramme)。影片是泛指將一系列的靜態影像以電訊號方式加以捕捉、紀錄、處理、儲存、傳送與重現的各種技術。 影音技術最早是從陰極射線管的電視系統的建立而發展起來的,但是之後新的顯示技術的發明,使影音技術所包括的範疇更大。基於電視的標準和基於電腦的標準,被試圖從兩個不同的方面來發展視訊技術。現在得益於計算機性能的提升,並且伴隨著數位電視的播出和記錄,這兩個領域又有了新的交叉和集中。 電腦現在能顯示電視訊號,能顯示基於電影標準的影音檔案和串流媒體,和快到暮年的電視系統相比,電腦伴隨著其運算器速度的提高,存儲容量的提高,和寬頻的逐漸普及,通用的電腦應用具備了採集,存儲,編輯和發送電視、影音檔案的能力。.

新!!: 信号 (信息论)和视频 · 查看更多 »

訊息

訊息(英語:Message),是一段獨立的溝通內容,由傳送者傳達給一個或多個對象,並期望他們充分接收。訊息可以用不同的方式傳達,包括信差、電報及電子匯流排。一個訊息可以是一段廣播的內容。一連串訊息的互動交換,就形成會話。 訊息的一個常見例子是「公告」,那是由公家機關發佈的一份簡要的政策說明或報告。.

新!!: 信号 (信息论)和訊息 · 查看更多 »

运动

#重定向 体育运动.

新!!: 信号 (信息论)和运动 · 查看更多 »

雜訊

Unreferenced/auto 自动产生。 --> 雜訊(Noise)在电子学中指,訊號在傳輸過程中會受到一些外在能量所產生訊號(如杂散电磁场)的干擾,這些能量即雜訊。雜訊通常會造成信號的失真。其來源除了來自系統外部,亦有可能由接收系統本身產生。雜訊的強度通常都是與訊號頻寬成正比,所以當訊號頻寬越寬,雜訊的干擾也會越大。所以在評估雜訊強度或是系統抵抗雜訊能力的數據,是以訊號強度對雜訊強度的比例為依據,此即訊雜比。.

新!!: 信号 (信息论)和雜訊 · 查看更多 »

PH计

pH计是一种用于测量液体的pH值的电子仪器(也有特殊的探针來测量半固体物质),可以確認物質的酸鹼性。一个典型的pH计由一个特殊的测量探头〔玻璃電極(glass electrode)〕连接到電壓表,量測并显示pH读数。為使測量結果準確,在使用前建議進行30分鐘左右的預熱。.

新!!: 信号 (信息论)和PH计 · 查看更多 »

换能器

换能器是将一种形式的能量转化成另一种形式的器件。这些能量形式包括电能、机械能、电磁能、光能、化学能、声能和热能等。虽然“换能器”这一术语一般表示一种传感器,事实上任何能够转化能量的器件都可以被认为是一种换能器。换能器被广泛用于测量仪表中。.

新!!: 信号 (信息论)和换能器 · 查看更多 »

时间

時間是一种尺度,在物理定义是标量,藉著时间,事件发生之先后可以按过去-现在-未来之序列得以确定(时间点),也可以衡量事件持續的期間以及事件之間和间隔长短(时间段) 。時間是除了空間三個維度以外的第四維度。 長久以來,時間一直是宗教、哲學及科學領域的研究主題之一,但學者們尚且無法為時間找到一個可以適用於各領域、具有一致性且又不循環的定義 。然而在商業、工業、體育、科學及表演藝術等領域都有一些各自來標示及度量時間的方法 108 pages 。一些簡單,爭議較小的定義包括「時間是時鐘量測的物理量。」及「時間使得所有事情不會同時發生。」, 哲學家對於時間有兩派不同的觀點:一派認為時間是宇宙的基本結構,是一個會依序列方式出現的維度,像艾萨克·牛顿就對時間有這樣的觀點。包括戈特弗里德·莱布尼茨及伊曼努爾·康德在內的另一派認為時間不是任何一種已經存在的維度,也不是任何會「流動」的實存物,時間只是一種心智的概念,配合空間和數可以讓人類對事件進行排序和比較。換句話說,時間不過是人為便於思考宇宙,而對物質運動劃分,是一種人定規則。例如:愛因斯坦就曾運用相對論的概念來描述比喻時間對心理層面上的影響,藉此解釋時間並非是絕對的。.

新!!: 信号 (信息论)和时间 · 查看更多 »

数字信号

數位訊號可以有多重的含义。它可以用来表示已经数字化的离散时间信号,或者表示數位系統中的波形信号。.

新!!: 信号 (信息论)和数字信号 · 查看更多 »

数字信号处理

数字信号处理(digital signal processing),简称DSP,是指用数学和数字计算来解决问题。大学里,数字信号处理常指用数字表示和解决问题的理论和技巧;而DSP也是数字信号处理器(digital signal processor)的简称,是一种可编程计算机芯片,常指用数字表示和解决问题的技术和芯片。 数字信号处理的目的是对真实世界的模拟信号进行加工和处理。因此在数字信号处理前,模拟信号要用模数转换器(A-D轉換器)变成数字信号;经数字信号处理后的数字信号往往要用数模转换器(D-A轉換器)变回模拟信号,才能适应真实世界的应用。 数字信号处理的算法需要用计算机或专用处理设备如数字信号处理器、专用集成电路等来实现。处理器是用乘法、加法、延时来处理信号,是0和1的数字运算,比模拟信号处理的电路稳定、准确、抗干扰、灵活。.

新!!: 信号 (信息论)和数字信号处理 · 查看更多 »

重定向到这里:

信号 (电子学)电子信号

传出传入
嘿!我们在Facebook上吧! »