目录
三角学
三角学是數學的一個分支,主要研究三角形,以及三角形中边与角之间的关系。三角学定義了三角函數,可以描述三角形边与角的关系,而且都是周期函数,可以用來描述周期性的現象。三角学在西元前三世紀時開始發展,最早是幾何學的一個分支,廣泛的用在天文量測中,三角学也是測量學的基礎。 三角学的基礎是平面三角学,研究平面上的三角形中边与角之间的关系,分为角的度量、三角函数与反三角函数、诱导公式、和与差的公式、倍角、半角公式、和差化积与积化和差公式、解三角形等内容,可能會是單獨的一個科目或是在预科微积分教授,三角函數在純數學及應用數學中的許多領域中出現,例如傅立葉分析及波函數等,是許多科技領域的基礎。 三角学也包括球面三角學,研究球面上,由大圓的弧所包圍成的球面三角形,位在曲率為正值常數的曲面上,是橢圓幾何的一部份,球面三角學是天文學及航海的基礎,也在测量学、制图学、结晶学、仪器学等方面有广泛的应用。負曲率曲面上的三角学則是雙曲幾何中的一部份。.
查看 余切定理和三角学
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
查看 余切定理和三角形
内切圆
在數學中,若一個二維平面上的多邊形的每條邊都能與其內部的一個圓形相切,該圓就是多邊形的內切圓,這時稱這個多邊形為圓外切多邊形。它亦是多邊形內部最大的圓形。内切圓的圓心被稱為該多邊形的内心。 一個多邊形至多有一個内切圓,也就是說對於一個多邊形,它的内切圓,如果存在的話,是唯一的。並非所有的多邊形都有内切圓。三角形和正多邊形一定有内切圓。擁有内切圓的四邊形被稱為圆外切四边形。.
查看 余切定理和内切圆
餘弦定理
余弦定理是三角形中三邊長度與一個角的余弦值(cos)的數學式,參考右圖,余弦定理指的是: 同樣,也可以將其改為: 其中c是\gamma角的對邊,而a和b是\gamma角的鄰邊。 勾股定理則是余弦定理的特殊情況,當\gamma為90^\circ時,\cos(\gamma).
查看 余切定理和餘弦定理
餘切
切(Cotangent,一般記作cot,或者ctg)是三角函数的一种,是正切的餘函數。它的定义域是整个不等于kπ的实数的集合,k为整数,值域是整个实数集。它是周期函数,其最小正周期为π。餘切函数是奇函数。 餘切函數在各个小区间上单独看為单调递减函數,和正切互為倒數,其函數圖形和正切函數圖形對稱於\tfrac;該函數不連續,有奇點kπ,其中k是一個整數。.
查看 余切定理和餘切
正弦定理
正弦定理是三角学中的一个定理。它指出:对于任意\triangle ABC,a、b、c分别为\angle A、\angle B、\angle C的对边,R为\triangle ABC的外接圆半径,则有 \frac.
查看 余切定理和正弦定理
正切定理
正切定理是三角学中的一个定理。根据该定理,在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。即: \frac.
查看 余切定理和正切定理