目录
三角錐柱
在幾何學中,三角錐柱是指底面為三邊形的錐柱體,或是將底面全等的三角錐與三角柱疊合所形成的立體。若底面為正三角形則稱為正三角錐柱。三角錐柱具有7個面、12個邊、和7個頂點,每個三角錐柱皆為一個七面體。.
查看 九胞體和三角錐柱
九面體
在幾何學中,九面體是指由9個平面組成的多面體,而邊長全部等長的九面體是七角柱是一種半正多面體。在九面體中,四角錐柱和它的對偶多面體都是九面體。.
查看 九胞體和九面體
九邊形
在幾何學中,九邊形是指有九條邊和九個頂點的多邊形,其內角和為1260度。九邊形有很多種,其中對稱性最高的是正九邊形。其他的九邊形依照其類角的性質可以分成凸九邊形和非凸九邊形,其中凸九邊形代表所有內角角度皆小於180度。非凸九邊形可以在近一步分成凹九邊形和星形九邊形,其中星形九邊形表示邊自我相交的九邊形。.
查看 九胞體和九邊形
五维空间
五維空間是一個包含五個維度的空間。 以物理學的角度來說,五維空間的維度比日常生活中所提到的三維空間以及相對論中的四維空間還要多。 五維空間是一種經常在數學中出現的抽象概念。在物理學和數學中,N數字的序列可以理解為表示''N''維歐幾里得空間中的位置。 宇宙的維度是否為五維同時也是個辯論的話題。.
查看 九胞體和五维空间
五角柱
在幾何學中,五角柱是一種多面體,是柱體的一種,是指底面是五邊形的柱體。當它底面是正五邊形時,則稱為正五角柱,若一正五角柱側面是正方形,則他就屬於半正多面體或均勻多面體,因此有時稱為半正七面體。 所有五角柱都是七面體,並且擁有7個面15個邊和10個頂點。.
查看 九胞體和五角柱
几何学
笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.
查看 九胞體和几何学
八維
#重定向 八维空间.
查看 九胞體和八維
四維
#重定向 四维空间.
查看 九胞體和四維
四面體
四面體是由四個三角形面組成的多面體,每两个三角形都有一个共同的边,每三个三角形都有一个共同的顶点。四面体有四个顶点,六条棱,四个面,是所有凸多面体中最简单的。四面體包括正四面體、鍥形體等種類,由四個全等的正三角形組成的四面體稱為正四面體。四面体也可以依角的類型分為銳角四面體、鈍角四面體、和直角四面體。 四面体是欧几里德单纯形在三维空间中的特例。 四面体也是锥体的一种。锥体是指将某个平面上的多面体的所有顶点分别和平面外的一点以线段连接後构成的多面体。按锥体的分类方法,所有四面體都是由某平面上的三角形和平面外一点构成的锥体,所以四面体也被称为三角錐。 与所有的凸多面体一样,四面体可以由某个平面图形(展开图)折叠而成。这样的展开图通常有两种。 与三角形类似,任何四面体的四个顶点都在同一个球面上。这个球称为四面体的外接球。同样地,存在一个与四面体的四个面都相切的球,称为四面体的内切球。.
查看 九胞體和四面體
立方體
立方體(Cube),是由6個正方形面組成的正多面體,故又稱正六面體(Hexahedron)、正方體或正立方體。它有12條稜(邊)和8個頂(點),是五個柏拉圖立體之一。 立方體是一種特殊的正四棱柱、長方體、三角偏方面體、菱形多面體、平行六面體,就如同正方形是特殊的矩形、菱形、平行四邊形一様。立方體具有,即考克斯特BC3對稱性,施萊夫利符號,,與正八面體對偶。.
查看 九胞體和立方體
正圖形
在幾何學中,正圖形又稱正多胞形(Regular polytope),即正幾何圖形,是一種對稱性对于可递的幾何體,且具有高度對稱性,對於該幾何體內所有同維度的元素(如:點、線、面)都完全具有相同的性質,並且每一個元素皆為一個正圖形,例如,正方體所有的面的面積及形狀皆相同,且皆為正方形,是一個二維正多胞形、所有邊的長度也相同,所有角的角度及形式也相同,因此正方體是一個正圖形或正多胞形。對於所有元素,或叫j維面(對所有的 0 ≤ j ≤ n,其中n是該幾何體所在的維度) — 胞、面等等 — 也都对于多胞形的对称性可递,也是≤ n维的正圖形。 正图形是正多边形(例如,正方形或者正五边形)和正多面体(例如立方体)的向任意维度的推广类比。正图形极强的对称性使它们拥有极强的审美价值,吸引着数学家和数学爱好者。 一般地,n维正图形被定义为有正和正顶点图。这两个条件已经能充分地保证所有面、所有顶点都是相似的。但要注意的是,这一定义并不适用于。 一个正图形能用形式为的施莱夫利符号代表,其正的面为,顶点图为。.
查看 九胞體和正圖形
正八面體
正八面體由八個等邊三角形,分別為上、下各四個三角形與一個正方形組成的正方錐體,上下黏合在一起而構成,是五種正多面體的第三種,有6個頂點和12條邊。正八面體也是正三角反棱柱。正八面体是三维的正轴形,施莱夫利符号,。 正八面體每四条棱可以成为一个正方形,共有三个独立的正方形。.
查看 九胞體和正八面體