徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

一氧化氮合酶

指数 一氧化氮合酶

一氧化氮合酶(縮寫NOS)是一組酶(EC1.14.13.39)的統稱。這種酶負責將精氨酸中的氮原子,在氧氣(O2)及其他輔助因素包括烟酰胺腺嘌呤二核苷酸磷酸(NADPH)、黃素腺嘌呤二核苷酸(FAD)、黃素單核苷酸(FMN)、原血紅素及四氫生物蝶呤(BH4)的存在環境下,合成一氧化氮。.

24 关系: 巨噬细胞中樞神經系統一氧化氮彈性動脈周围神经系统免疫系统精氨酸细胞羅伯·佛契哥特烟酰胺腺嘌呤二核苷酸磷酸病原體瓜氨酸电子EC編號血管高尔基体钙调蛋白自由基蛋白质氧化氧气

巨噬细胞

巨噬細胞(macrophage,縮寫為mφ)是一種位於組織內的白血球,源自單核球,而單核球又來源於骨髓中的前體细胞。巨噬細胞和單核球皆為吞噬細胞,在脊椎動物體內參與非特異性防衛(先天性免疫)和特異性防衛(细胞免疫)。它們的主要功能是以固定細胞或游離細胞的形式對細胞残片及病原體進行噬菌作用(即吞噬以及消化),并激活淋巴球或其他免疫細胞,令其對病原體作出反應。.

新!!: 一氧化氮合酶和巨噬细胞 · 查看更多 »

中樞神經系統

中枢神经系统(英文:central nervous system,縮寫:CNS)是神经系统中神经细胞集中的结构,在脊椎动物包括腦和脊髓;在高等无脊椎动物如环节动物和昆虫等,则主要包括腹神经索和一系列的神经节。 人的中枢神经系统构造最复杂而完整,特别是大脑半球的皮层获得高度的发展,成为神经系统最重要和高级的部分,保证了机体各器官的协调活动,以及机体与外界环境间的统一和协调。 中樞神經系統與周围神经系统組成了神經系統,控制了生物的行為。 整個中樞神經系統位於背腔,腦在顱腔,脊髓在脊椎管;顱骨保護腦,脊椎保護脊髓。.

新!!: 一氧化氮合酶和中樞神經系統 · 查看更多 »

一氧化氮

一氧化氮是氮的化合物,化学式NO,分子量30,氮的化合价为+2,是一種無色、無味、難溶於水的有毒氣體。由於一氧化氮帶有自由基,這使它的化學性質非常活潑。具有顺磁性。当它与氧反应后,可形成具有腐蚀性的气体——二氧化氮(NO2)。一氧化氮在标准状况下为无色气体,液态、固态呈蓝色。.

新!!: 一氧化氮合酶和一氧化氮 · 查看更多 »

彈性動脈

彈性動脈(elastic artery)為一種動脈,其含有大量膠原蛋白及弹性蛋白的血管。該血管具有一定的彈性,以承受脈搏的張力。彈性動脈的彈性及伸縮性造成了韦德克瑟尔效应,意即彈性血管緩衝了脈搏所造成的血壓波動。彈性動脈包含全身所有最大的血管,如肺動脈、主動脈等。 彈性動脈的外膜具有血管滋養管供給血管細胞養分。.

新!!: 一氧化氮合酶和彈性動脈 · 查看更多 »

周围神经系统

周圍神经系统(Peripheral Nervous System,縮寫為PNS),又稱外周神經系統、週邊神經系統、邊緣神經系統或末稍神經系統,是神经系统的组成部分,包括除脑和脊髓之外的神经部分。 脑和脊髓组成中枢神经系统。相比后者,周圍神经系统没有骨骼和血脑屏障的保护。周圍神經系統又分爲躯体神经系统和自主神经系统。 但PNS和CNS的划分并非着眼于其功能。神经元由胞体和其突起组成。运动(专司随意运动)和植物性(内部器官的功能调节)神经元的胞体都在CNS。感觉(传导感觉)神经元的胞体则几乎都在PNS的神经节中,但是它们都有突起传入CNS。信息会在CNS汇总整合,并引发随意或不随意的反应(反射)。所以周圍神经系统并非独立,只是一个形态划分。例外是肠神经系统,其信息整合部分独立于CNS。 属于外周神经系统的有:.

新!!: 一氧化氮合酶和周围神经系统 · 查看更多 »

免疫系统

免疫系统是生物体体内一系列的生物学结构和所组成的疾病防御系统。免疫系统可以检测小到病毒大到寄生虫等各类病原体和有害物质,并且在正常情况下能够将这些物质与生物体自身的健康细胞和组织区分开来。 病原体可以快速地进化和调整,来躲避免疫系统的侦测和攻击。为了能够在与病原体的对抗中获胜,生物体进化出了多种识别和消灭病原体的机制。就连简单的单细胞生物,如细菌,也发展出了可以对抗噬菌体感染的酶系统。一些真核生物,例如植物和昆虫,从它们古老的祖先那里继承了简单的免疫系统。这些免疫机制包括抗微生物多肽(防御素)、吞噬作用和补体系统。包括人类在内的有颌类脊椎动物则发展出更为复杂多样的防御机制。 典型的脊椎动物免疫系统由多种蛋白质、细胞、器官和组织所组成,它们之间相互作用,共同构成了一个精细的动态网络。作为复杂的免疫应答的一部分,人类的免疫系统可以通过不断地适应来更有效地识别特定的病原体。这种适应过程被定义为“适应性免疫”或“获得性免疫”。针对特定的病原体的初次入侵,免疫系统中的記憶T細胞能够产生“免疫记忆”;当该种病原体再次入侵时,这种记忆就可以使免疫系统迅速作出强化的免疫应答(即“适应性”)。而适应性免疫正是疫苗注射能够产生免疫力的生物学基础。 免疫系统的紊乱会导致多种疾病的产生。免疫系统的活力降低就会发生免疫缺陷,进而导致经常性和致命的感染。免疫缺陷可以是遗传性疾病,如重症聯合免疫缺陷;也可以由药物治疗或病菌感染引发,如艾滋病就是由于艾滋病毒感染而引发的适应性免疫缺陷综合症。另一方面,免疫系统異常会将正常的组织作为入侵者而进行攻击,从而引起自体免疫疾病。常见的自体免疫疾病包括慢性甲状腺炎、类风湿性关节炎、第一型糖尿病和系統性紅斑性狼瘡。.

新!!: 一氧化氮合酶和免疫系统 · 查看更多 »

兔,又称兔子,在汉语中是哺乳类兔形目兔科(学名:Leporidae)物种的总称。.

新!!: 一氧化氮合酶和兔 · 查看更多 »

精氨酸

精氨酸(Arginine)是一種α-胺基酸,亦是20種普遍的自然胺基酸之一。在分子遺傳學上,信使核糖核酸的結構,CGU,CGC,CGA,CGG,AGA和AGG。是在蛋白質合成時核苷酸鹼基或遺傳密碼子代碼為精氨酸的三元組。在哺乳動物生活中,精氨酸被分類為半必要或條件性必要的胺基酸(非必需胺基酸),身體能自行產生,但在壓力或疾病的時候,可能需要更多。也視乎生物的發育階段及健康狀況而定。早產兒體內不能合成精氨酸,使得補充他們營養中的精氨酸變得非常重要。於1886年精氨酸是首先由瑞士化學家恩斯特·舒爾茨從扁豆苗萃取物中分離出來。.

新!!: 一氧化氮合酶和精氨酸 · 查看更多 »

细胞

细胞(Cell)是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹其外)。 in Chapter 21 of fourth edition, edited by Bruce Alberts (2002) published by Garland Science.

新!!: 一氧化氮合酶和细胞 · 查看更多 »

羅伯·佛契哥特

羅伯·佛契哥特(Robert Francis Furchgott,),生於美國南卡羅萊那州的查爾斯頓,美国化學家。.

新!!: 一氧化氮合酶和羅伯·佛契哥特 · 查看更多 »

烟酰胺腺嘌呤二核苷酸磷酸

--胺腺二核酸磷酸(简称:辅酶Ⅱ,nicotinamide adenine dinucleotide phosphate, NADP+)——曾被称为三磷酸核苷酸(,缩写为TPN)——是一种极为重要的核苷酸类辅酶,它是烟酰胺腺嘌呤二核苷酸(NAD+)中与腺嘌呤相连的核糖环系2'-位的磷酸化衍生物,参与多种合成代谢反应,如脂类、脂肪酸和核苷酸的合成。这些反应中需要NADP+的还原形式NADPH作为还原剂、氢负供体。 植物叶绿体中,光合作用光反应电子链的最后一步以NADP+为原料,经铁氧还蛋白-NADP+还原酶的催化而产生NADPH。产生的NADPH接下来在碳反应中被用于二氧化碳的同化。 对于动物来说,磷酸戊糖途径的氧化相是细胞中NADPH的主要来源,由它可以产生60%的所需NADPH。.

新!!: 一氧化氮合酶和烟酰胺腺嘌呤二核苷酸磷酸 · 查看更多 »

病原體

#重定向 病原体.

新!!: 一氧化氮合酶和病原體 · 查看更多 »

瓜氨酸

氨酸(citrulline)是一種α氨基酸,名字是由首先抽取出瓜氨酸的西瓜而來。.

新!!: 一氧化氮合酶和瓜氨酸 · 查看更多 »

电子

电子(electron)是一种带有负电的次原子粒子,通常标记为 e^- \,\!。電子屬於轻子类,以重力、電磁力和弱核力與其它粒子相互作用。轻子是构成物质的基本粒子之一,无法被分解为更小的粒子。电子带有1/2自旋,是一种费米子。因此,根據泡利不相容原理,任何兩個電子都不能處於同樣的狀態。电子的反粒子是正电子(又称正子),其质量、自旋、帶电量大小都与电子相同,但是电量正負性与电子相反。電子與正子會因碰撞而互相湮滅,在這過程中,生成一對以上的光子。 由电子與中子、质子所组成的原子,是物质的基本单位。相对于中子和质子所組成的原子核,电子的质量显得极小。质子的质量大约是电子质量的1836倍。当原子的电子数与质子数不等时,原子会带电;称該帶電原子为离子。当原子得到额外的电子时,它带有负电,叫阴离子,失去电子时,它带有正电,叫阳离子。若物体带有的电子多于或少于原子核的电量,导致正负电量不平衡时,称该物体带静电。当正负电量平衡时,称物体的电性为电中性。靜電在日常生活中有很多用途,例如,靜電油漆系統能夠將或聚氨酯漆,均勻地噴灑於物品表面。 電子與質子之間的吸引性庫侖力,使得電子被束縛於原子,稱此電子為束縛電子。兩個以上的原子,會交換或分享它們的束縛電子,這是化學鍵的主要成因。当电子脱离原子核的束缚,能够自由移动时,則改稱此電子为自由电子。许多自由电子一起移动所产生的净流动现象称为电流。在許多物理現象裏,像電傳導、磁性或熱傳導,電子都扮演了機要的角色。移動的電子會產生磁場,也會被外磁場偏轉。呈加速度運動的電子會發射電磁輻射。 根據大爆炸理論,宇宙現存的電子大部份都是生成於大爆炸事件。但也有一小部份是因為放射性物質的β衰變或高能量碰撞而生成的。例如,當宇宙線進入大氣層時遇到的碰撞。在另一方面,許多電子會因為與正子相碰撞而互相湮滅,或者,會在恆星內部製造新原子核的恆星核合成過程中被吸收。 在實驗室裏,精密的尖端儀器,像四極離子阱,可以長時間局限電子,以供觀察和測量。大型托卡馬克設施,像国际热核聚变实验反应堆,藉著局限電子和離子電漿,來實現受控核融合。無線電望遠鏡可以用來偵測外太空的電子電漿。 電子被广泛應用于電子束焊接、陰極射線管、電子顯微鏡、放射線治療、激光和粒子加速器等领域。.

新!!: 一氧化氮合酶和电子 · 查看更多 »

EC編號

EC編號或EC號是為酶所製作的一套編號分類法,是以每種酶所催化的化學反應為分類基礎。這套分類法亦同時會為各種酶給予一個建議的名稱,所以亦稱為酶學委員會命名法。.

新!!: 一氧化氮合酶和EC編號 · 查看更多 »

血管

血管(德语: Blutgefäße;;西班牙语,葡萄牙语: vasos sanguineos)是生物運送血液的管道,依運輸方向可分為動脈、靜脈與微血管。動脈從心臟將血液帶至身體組織,靜脈將血液自組織間帶回心臟,微血管則連接動脈與靜脈,是血液與組織間物質交換的主要場所。各種生物擁有的血管型態各不相同:開放式循環()生物,如昆蟲,只有動脈,血液自動脈流出直接接觸身體組織,再由心臟上的開孔回收血液;閉鎖式循環()生物,如哺乳類、鳥類、爬蟲類、魚類,則由動脈連接微血管再接至靜脈,最後回歸心臟。.

新!!: 一氧化氮合酶和血管 · 查看更多 »

高尔基体

尔基体(Golgi apparatus)是真核细胞中的一种细胞器。屬於細胞的一組膜,專門收集並包裹各種物質,例如酶和激素。這些膜形成像一堆平板的扁囊,部份扁囊常常脫離並移向質膜,一旦與質膜接合,便將其中內含物排出細胞。 大多数真核细胞生物(包括植物、动物和真菌)均有高尔基体。 高尔基体是1898年被意大利解剖学家卡米洛·高基发现的并以他的名字命名。高尔基体的主要功能在于处理细胞膜、溶酶体或内体上的以及细胞生产的蛋白质,将它们分到不同的小泡中去。因此它是细胞的中心传送系统。 大多数离开内质网的运输小泡首先来到高尔基体,在这里被改变,分开和运送到它们的最终目的地。大多数真核细胞有高尔基体,但是尤其在分泌许多物质(比如蛋白质)的细胞裡它特别突出。比如免疫系统中分泌抗体的浆细胞的高尔基体就特别发达。.

新!!: 一氧化氮合酶和高尔基体 · 查看更多 »

钙调蛋白

钙调蛋白(Calmodulin,简称CaM),是一種能与钙离子结合的蛋白质,普遍存在真核生物细胞中。 钙调蛋白是一种多功能中介钙结合蛋白。它是第二信使Ca^2+的细胞内靶点,钙调蛋白的激活需要Ca^2+的结合。一旦与Ca^2+结合,钙调蛋白作为钙信号转导通路的一部分,通过改变激酶或磷酸酶等目标蛋白的活性而起到信号转导的作用。.

新!!: 一氧化氮合酶和钙调蛋白 · 查看更多 »

自由基

自由基(英語:Free Radical),又称游离基,是指化合物的分子在光热等外界条件下,共价键发生均裂而形成的具有不成对电子的原子或基团。在书写时,一般在原子符号或者原子团符号旁边加上一个“·”表示没有成对的电子。如氢自由基(H·,即氢原子)、氯自由基(Cl·,即氯原子)、(OH·),甲基自由基(CH3·)和四甲基哌啶氧自由基等。自由基极易发生反应(如二聚反应、夺氢反应、氧化反应、歧化反应等)。自由基可以是带正电荷,负电荷或者不带电荷。虽然金属以及它们的离子或者它们的络合物有不成对的电子,但按照常规习惯定义不算是自由基。 除了极个别情况, 大多数的未成对电子形成的自由基都具有较高的化学活性。 自由基反应在燃烧、大气化学、聚合反应、等离子体化学、生物化学和其他各种化学学科中扮演很重要的角色。在化学生物学当中,过氧化物和一氧化氮调节着许多生物过程比如控制血管张力。这样的自由基可以作为一种称为氧化还原信号当中的信使。自由基可被溶剂笼包围。.

新!!: 一氧化氮合酶和自由基 · 查看更多 »

酶(Enzyme( ))是一类大分子生物催化劑。酶能加快化學反應的速度(即具有催化作用)。由酶催化的反應中,反應物稱爲底物,生成的物質稱爲產物。幾乎所有細胞內的代謝過程都離不開酶。酶能大大加快這些過程中各化學反應進行的速率,使代謝產生的物質和能量能滿足生物體的需求。細胞中酶的類型對可在該細胞中發生的代謝途徑的類型起決定作用。對酶進行研究的學科稱爲「酶學」(enzymology)。 目前已知酶可以催化超過5000種生化反應。大部分酶是蛋白質,有少部分酶是具有催化活性的RNA分子,这些酶被称为核酶。酶的特異性是由其獨特的三級結構決定的。 和所有的催化劑一樣,酶通過降低反應活化能加快化學反應的速率。一些酶可以將底物轉化爲產物的速率提高數百萬倍。一個比較極端的例子是。該酶可以使在無催化劑條件下需要進行數百萬年的化學反應在幾毫秒內完成。從化學原理上講,酶和其它所有催化劑一樣,反應不會使其物質量發生變化。酶亦不能改變化學平衡,這一點和其它催化劑也是一樣的。酶和其它催化劑的不同之處在於,它們的專一性要強得多。一些分子可以影響酶的活性。如酶抑制劑能降低酶的活性,酶激活劑能提高酶的活性。許多藥物及毒物是酶的抑制劑。當超出適宜的溫度和pH值後,酶的活性會顯著下降。 酶在工业和人们的日常生活中的应用也非常广泛。例如,药厂用特定的合成酶来合成抗生素;洗衣粉中添加酶能加速附着在衣物上的蛋白质、淀粉或脂肪漬的分解;嫩肉粉中加入木瓜蛋白酶能將蛋白質分解爲稍小的分子,使肉的口感更嫩滑。.

新!!: 一氧化氮合酶和酶 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 一氧化氮合酶和蛋白质 · 查看更多 »

氧化

氧化又被称为氧化作用、氧化反应。是还原剂(被氧化物)与氧化剂(被还原物)之间的氧化数升降。还原剂的氧化数上升(失去电子),氧化剂的氧化数下降(获得电子)。 一般物质与氧气发生氧化时放热,个别可能吸热,如氮气与氧气的反应。电化学中阳极发生氧化,阴极发生还原。.

新!!: 一氧化氮合酶和氧化 · 查看更多 »

氧气

氧气(Oxygen, Dioxygen,分子式O2)是氧元素最常见的单质形态,在空气中按体积分数算大约占21%,在标准状况下是气体,不易溶于水,密度比空气略大,氧气的密度是1.429g/L 。不可燃,可助燃。.

新!!: 一氧化氮合酶和氧气 · 查看更多 »

氮是一种化学元素,其化学符号为N;原子序数是7。在自然界中氮单质最普遍的形态是氮气,这是一种在标准状况下无色无味无臭的雙原子气体分子,由于化学性质稳定而不容易发生化學反应。氮气是地球大气中含量最多的气体,佔總體積的78.09%。1772年在苏格兰爱丁堡,由丹尼尔·卢瑟福分離空氣後发现。氮属于氮族元素中的一种。 氮是宇宙中常見的元素,在銀河系及太陽系的豐度排第七名。其生成的原因推測是由於超新星中碳和氫產生的核融合。由於氮元素及其和氫、氧形成的常见化合物都极易揮發,因此在內太陽系中的類地行星中氮元素較不常見。不過和地球一样,其他行星及其卫星的大氣層中,气态的氮及其化合物很常见。 很多工业上很重要的化合物(比如氨、硝酸、用作推进剂或炸药的有机硝酸盐以及氰化物)都含有氮原子。氮原子之间具有非常牢固的化学键,无论是在工业中或是在生物体內,将转化为有用的含氮化合物都是很不容易的。相应的,当含氮化合物燃烧,爆炸或分解时会产生氮气,并通常可以释放大量有用的能量。合成产生的氨和硝酸盐是关键的工业化肥料,而硝酸盐肥料是引起水系统富营养化的关键污染物。 含氮化合物除了作为肥料和能量储存的功用之外还有其他多种用途。氮是克維拉纤维和氰基丙烯酸酯强力胶水等多种材料的组成部分。在各种药学药品的大类中(包括抗生素)都含有氮元素。许多药物都是天然含氮信号分子的类似物或前体药物。比如,有机硝酸盐硝酸甘油和硝普钠在体内代谢产生一氧化氮以控制血压。植物中的生物鹼(经常是防卫性化合物)根据定义是含有氮的,许多知名的含氮药物(比如咖啡因和吗啡)是生物碱或是合成的天然产物类似物,像许多植物生物碱一样用作于动物体内的神经传导物质的接收器上(例如合成苯丙胺)。 氮主要存在于所有的有机体的氨基酸(以及蛋白质)和核酸(DNA和RNA)之中。人类身体中的3%的重量都是氮元素构成的,其含量仅次于氧元素、碳元素和氢元素。氮循环是指氮元素从空气进入生物圈和有机化合物中然后再返回大气的转移过程。.

新!!: 一氧化氮合酶和氮 · 查看更多 »

传出传入
嘿!我们在Facebook上吧! »