徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

指数 模

在數學的抽象代數中,環上的模 (module over a ring)的概念是對向量空間概念的推廣,這裡不再要求向量空間裡的純量的代數結構是體(field),進而放寬純量可以是環(ring)。 因此,模同向量空間一樣是加法交换群;在環元素和模元素之間定義了乘積運算,并且環元素和模元素的乘積是符合結合律的(在同環中的乘法一起用的時候)和分配律的。 模非常密切的關聯於群的表示理論。它們還是交換代數和同調代數的中心概念,并廣泛的用于代數幾何和代數拓撲中。.

142 关系: 基变更基本单位 (数论)半單模十六进制转储单位群可加範疇双线性映射双模同餘關係同調代數同调论同构基本定理合成列向量場向量丛向量空间增廣理想复数 (数学)外代数子模完备空间完全格导子尚努埃爾引理對偶性 (弦論)射流上同調維數不变质量中山引理一次性密碼本九引理平坦模平衡点么半範疇交换环交換代數交流电功率二次型五引理代数代数结构代数拓扑代數 (環論)代數整數张量代数张量积張量引力場微分算子德林費爾德模...初等阿貝爾群分式理想單模凱萊-哈密頓定理函子商环商群內射包內射分解內射維度、投射維度與同調維度內射模全息摄影典型群四元數四维空间四维速度BPS態矩阵环面理想数等变映射等价类算子範 (鑄造工具)紧化 (物理学)纯旋量线性代数群的直和群论結合代數環的局部化点积特征分解特征值和特征向量直积Ext函子联络預可加範疇表示论行列式规范场论諾特模譜序列谷山-志村定理贝利-波尔温-普劳夫公式輾轉相除法霍赫希尔德同调阿廷模阿貝爾範疇阿贝尔群链复形量子力學的數學表述自同态自由對象自由群長度 (模論)蛇引理雅各布森根雙線性形式F理論Verma模抽象代数抽象代数逻辑投射分解柯西積分公式推出 (范畴论)李代数上同调李代数胚核 (代数)标量乘法森田等价模 (消歧义)欧拉公式正合序列正规矩阵正规态射法瓦德常數泛包絡代數深度 (模論)準素分解準素理想有单位的有限生成戶田定理数学符号表整性托勒密定理拉格朗日恒等式态射怀特海问题 扩展索引 (92 更多) »

基变更

在线性代数中,n 维向量空间的基是 n 个向量 α1,..., αn 的序列,带有所有这个空间中的向量可以唯一的表达为基向量的线性组合的性质。因为经常需要处理一个向量空间的多于一个的基,在线性代数中能够轻易的变换向量的逐坐标表达,和变换关于一个基的线性映射到关于另一个基的等价表达是根本重要的。这种变换叫做基变更。 尽管下面采用了术语向量空间,符号 R 意味着实数域,这里讨论的结果成立只要 R 是交换环,而这里的向量空间可替代为自由 R-模。.

新!!: 模和基变更 · 查看更多 »

基本单位 (数论)

在代数数论,基本单位,是数域中代数整数环的生成元(即模单位根),可理解为单位群模其扭子群是个无限循环群。狄利克雷单位定理表明:rank.

新!!: 模和基本单位 (数论) · 查看更多 »

半單模

在模論中,一個環 A 上的左模 M 若可表為單模的直和,便稱 M 為半單模。 本條目中的環皆有乘法單位元素 1。對於右模,相應的陳述依然成立。.

新!!: 模和半單模 · 查看更多 »

十六进制转储

在电脑运算领域,十六进制转储(英文:Hex dump)是指从内存或其他存储设备中调取的数据的十六进制视图(该视图被打印在屏幕上或者纸上)。在调试软件及进行反向工程时,操作者经常需要查阅十六进制转储。 在十六进制转储中,每个字节被两位十六进制数字代表。十六进制转储在显示时通常被排列成8或16字节的列,有时用空格隔开。一些十六进制转储工具在行首提供十六进制的内存地址,有些则在行尾提供检验值。 虽然十六进制转储的名称中包含“十六进制”,但是一些十六进制转储软件也提供八进制或者十进制的输出选项。常用的十六进制转储工具包括 hexdump、od、xxd,有时这些软件也会被简单地命名为 dump 或者 D。.

新!!: 模和十六进制转储 · 查看更多 »

单位群

在环中,所有可逆元素叫环的单位,所有单位对乘法可构成一个乘法群,叫环的单位群。对环(域)来说,单位群所有元素,和环(域)的所有元素有多少相同,有多少不同,可由环的素理想,分式理想,理想类群来度量。 整数环Z的单位只有1,-1,单位群同构于循环群C2。模n 的剩余类环Zn单位群记为U(Zn)。仅有U(Z3),U(Z4),U(Z6),U(Z8),U(Z12),U(Z24)非单位元的阶均为2;非单位元的阶均为其他素数p(p > 2)的单位群不存在。.

新!!: 模和单位群 · 查看更多 »

可加範疇

在範疇論中,一個可加範疇是一個存在有限雙積的預加法範疇。舊文獻所謂的「可加範疇」有時指預可加範疇,在當代理論中則傾向於區別兩者。 一如預可加範疇,對一交換環k也能定義k-可加範疇,可加範疇是k.

新!!: 模和可加範疇 · 查看更多 »

双线性映射

在数论中,一个双线性映射是由两个向量空间上的元素,生成第三个向量空间上一个元素之函数,并且该函数对每个参数都是线性的。例如矩阵乘法就是一个例子。.

新!!: 模和双线性映射 · 查看更多 »

双模

在抽象代数中,一个双模(bimodule)是一个既为左模也为右模的阿贝尔群,且左右乘法相容。除了自然出现于许多数学领域,双模也扮演着澄清的角色,许多左模与右模之间的关系当将其用双模来表示时变得简单。.

新!!: 模和双模 · 查看更多 »

同餘關係

在数学特别是抽象代数中,同餘关系或简称同餘是相容于某个代数运算的等价关系。.

新!!: 模和同餘關係 · 查看更多 »

同調代數

同調代數是數學的一個分支,它研究同調與上同調技術的一般框架。.

新!!: 模和同調代數 · 查看更多 »

同调论

数学中,同调论(homology theory)是拓扑空间“圈的同调”之直觉几何想法的公理化研究。它可以宽泛地定义为研究拓扑空间的同调理论。.

新!!: 模和同调论 · 查看更多 »

同构基本定理

同构基本定理或称同态基本定理,包含三个定理,在泛代数领域有广泛的应用。它们证明了一些自然同构的存在性。.

新!!: 模和同构基本定理 · 查看更多 »

合成列

在抽象代數中。合成列是藉著將代數對象(如群、模等等)拆解為簡單的成份,以萃取不變量的方式之一。以模為例,一般環上的模未必能表成單模的直和。但是我們可退而求其次,考慮一組過濾 \.

新!!: 模和合成列 · 查看更多 »

向量場

在向量分析中,向量場是把空間中的每一點指派到一個向量的映射。 物理學中的向量場有風場、引力場、電磁場、水流場等等。.

新!!: 模和向量場 · 查看更多 »

向量丛

数学上,向量丛是一个几何构造,為拓扑空间(或流形,或代数簇)的每一点相容地附上一个向量空间,而这些向量空间“粘起来”又构成一个拓扑空间(或流形,或代数簇)。 一个典型的例子是微分流形的切丛:对流形的每一点附上流形在该点的切空间。 另一个例子是法丛:給定一个平面上的光滑曲线,可在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。 这个条目主要解釋有限维纤维的实向量丛。複向量丛也在很多地方有用;他们可以视为一種有附加结构的实向量丛。 向量丛是纤维丛的一種。.

新!!: 模和向量丛 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

新!!: 模和向量空间 · 查看更多 »

增廣理想

代數中,增廣理想是可以在任何群環中定義的一種理想。若G是群,R是交換環,則有一個自群環R至R的環同態\varepsilon,稱為增廣映射,將R的元素 映射至 其中ri是R的元素,gi是G的元素。按照群環的定義,以上的和是有限和。較籠統而言,對G任何元素g,定義 為1R,再將\varepsilon以最顯然的方法延伸成R-模的同態。增廣理想是\varepsilon的核,因此是R的雙邊理想,由群元素的差 生成。 此外,增廣理想是自由R-模,可用 為其基底而生成。 對上述的R和G,群環R是增廣R-代數的一例。這樣的代數都帶有一個映至R上的環同態。這個環同態的核是這個代數的增廣理想。 增廣理想的另一類例子是任何霍普夫代數的餘單位元\varepsilon的核。 增廣理想是群上同調等應用中的基本工具。.

新!!: 模和增廣理想 · 查看更多 »

复数 (数学)

複數,為實數的延伸,它使任一多項式方程式都有根。複數當中有個「虛數單位」i,它是-1的一个平方根,即i ^2.

新!!: 模和复数 (数学) · 查看更多 »

外代数

外代数(Exterior algebra)也稱為格拉斯曼代数(Grassmann algebra),以紀念赫爾曼·格拉斯曼。 数学上,给定向量空间V的外代數,是特定有单位的结合代数,其包含了V为其中一个子空间。它记为 Λ(V) 或 Λ•(V)而它的乘法,称为楔积或外积,记为∧。楔积是结合的和双线性的;其基本性質是它在V上交錯的,也就是: 这表示 注意这三个性质只对 V 中向量成立,不是对代数Λ(V)中所有向量成立。 外代数事实上是“最一般的”满足这些属性的代数。这意味着所有在外代数中成立的方程只从上述属性就可以得出。Λ(V)的这个一般性形式上可以用一个特定的泛性质表示,请参看下文。 形式为v1∧v2∧…∧vk的元素,其中v1,…,vk在V中,称为k-向量。所有k-向量生成的Λ(V)的子空间称为V的k-阶外幂,记为Λk(V)。外代数可以写作每个k阶幂的直和: 该外积有一个重要性质,就是k-向量和l-向量的积是一个k+l-向量。这样外代数成为一个分次代数,其中分级由k给出。这些k-向量有几何上的解释:2-向量u∧v代表以u和v为边的带方向的平行四边形,而3-向量u∧v∧w代表带方向的平行六面体,其边为u, v, 和w。 外幂的主要应用在于微分几何,其中他们用来定义微分形式。因而,微分形式有一个自然的楔积。所有这些概念由格拉斯曼提出。.

新!!: 模和外代数 · 查看更多 »

子模

设M是左R-模和N是M的子群,则N是一个R中左子模(或更明确叫左R-子模),即如果R中任何r,N中任何n,rn还在N中。相应的如果R中任何r,N中任何n,nr还在N中,叫右R-子模。 一个给定的模M的子模N1,N2,N3,两个二元运算,+,∩,满足格的模律,且子模N1是N2子集,则: (N1 + N3) ∩ N2.

新!!: 模和子模 · 查看更多 »

完备空间

完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。.

新!!: 模和完备空间 · 查看更多 »

完全格

在数学中,完全格是在其中所有子集都有上确界(并)和下确界(交)的偏序集。完全格出现于数学和计算机科学的很多应用中。作为格的特殊实例,在序理论和泛代数中都有所研究。 完全格一定不能混淆于完全偏序(cpo),它构成严格的更加一般的一个偏序集合类别。更特殊的完全格是完全布尔代数和完全Heyting代数(locale)。.

新!!: 模和完全格 · 查看更多 »

导子

在抽象代数中,一个导子(derivation)是代数上的函数,推广了导数算子的某些特征。明确地,给定一个环或域 k 上一个代数 A,一个 k-导子是一个 k-线性映射 D: A → A,满足莱布尼兹法则: 更一般地,从 A 映到 A-模 M 的一个 k-线性映射 D,满足莱布尼兹法则也称为一个导子。A 所有到自身的 k-导子集合记为 Derk(A)。从 A 到 A-模 M 的所有 k-导子集合记为 Derk(A,M)。 导子在不同的数学领域以许多不同的面貌出现。关于一个变量的偏导数是 Rn 上实值可微函数组成的代数上的一个 R-导子。关于一个向量场的李导数是可微流形上可微函数代数上的 R-导子;更一般地,它是流形上张量代数的导子。Pincherle 导数是一个抽象代数上的导子的例子。如果代数 A 非交换,则关于 A 中一个元素的交换子定义了 A 到自身的线性映射,这是 A 的一个 k-导子。一个代数 A 装备一个特定的导子 d 组成了一个微分代数,这自身便是一些研究领域的一个重要对象,比如微分伽罗瓦理论。.

新!!: 模和导子 · 查看更多 »

尚努埃爾引理

在數學的同調代數中,尚努埃爾(Schanuel)引理是一條簡易的基本結果,可用來比較一個模離投射性有多遠。.

新!!: 模和尚努埃爾引理 · 查看更多 »

對偶性 (弦論)

弦論中的對偶性(duality),是指弦論中的是兩個看似不相同的理論,實際上是等價的。所謂等價,意思是即使兩個理論對實驗本身的物理描述可能完全不同,兩個理論對所有可以測量的值都有相等的預測。.

新!!: 模和對偶性 (弦論) · 查看更多 »

射流

数学上,射流(jet)是一个操作,它取一个可微函数f并在其定义域的每一点产生一个多项式,也就是f的截尾泰勒多项式。虽然这是一个射流的定义,射流理论将这些多项式作为抽象多项式而不是多项式函数。.

新!!: 模和射流 · 查看更多 »

上同調維數

代數中,上同調維數是群的不變量,量度群的表示的同調複雜度。上同調維數在幾何群論、拓撲學、代數數論中有重要應用。.

新!!: 模和上同調維數 · 查看更多 »

不变质量

不变质量(invariant mass)或称内秉质量(intrinsic mass)、固有质量(proper mass),亦常简称为质量,指的是一个物体或一个物体系统由总能量和动量构成的在所有参考系下都相同的一个洛仑兹不变量。当这个系统作为整体保持静止时,不变质量等于系统的总能量除以光速的平方,这也等于这个系统在一个与之相对静止的秤上称得的质量。如果系统由一个单一粒子组成,不变质量也称作这个粒子的静止质量。 由于一个孤立系统的质心总保持匀速直线运动,因此观察者总可以选择这样一个参考系,使系统在这一参考系中的总动量为零,即相对这个参考系为静止。这样的参考系称作质心系,这时系统的不变质量就等于系统的总能量除以光速的平方。这个於质心系下的总能量,可以被看作是系统在不同惯性系下可能被观测到所具有能量的“最小值”。 在多粒子系统的情形下,质心系中的粒子彼此之间可能会存在相对运动,并有可能存在一种或多种基本相互作用。这时粒子的动能和力场的势能会增大系统的总能量,使之大于所有粒子的静止质量之和,这部分能量也对系统的不变质量有贡献。.

新!!: 模和不变质量 · 查看更多 »

中山引理

在交換代數中,中山引理是相當有用的一個技術工具。.

新!!: 模和中山引理 · 查看更多 »

一次性密碼本

一次性密碼本(one-time pad,缩写为OTP)是古典密碼學中的一種加密演算法。是以隨機的密钥(key)組成明文,且只使用一次。.

新!!: 模和一次性密碼本 · 查看更多 »

九引理

在數學中,九引理是一個對任意阿貝爾範疇(例如阿貝爾群範疇與模範疇)均成立的抽象結果,此引理斷言:給定如下的交換圖: 若每一直行及下兩橫列正合,則最上一個橫列也正合;類此,若每一直行及上兩橫列正合,則最下一個橫列也正合。 九引理可透過圖追蹤直接證明,或藉著對正合橫列套用蛇引理證明。 Linderholm (p.201) 曾這麼挖苦九引理:.

新!!: 模和九引理 · 查看更多 »

平坦模

在抽象代數中,一個環 R 上的平坦模是一個 R-模 M,使得函子 - \otimes_R M 保持序列的正合性;若此函子還是忠實函子,則稱之為忠實平坦模 域上的向量空間都是平坦模。自由模或更一般的射影模也是平坦模。对于一个局部諾特環上的有限生成模,平坦性、射影性與自由性三者等價。 自塞爾的論文《代數幾何與微分幾何》以降,平坦性便在同調代數與代數幾何中扮演重要角色。其幾何意義甚深,詳見條目平坦態射。.

新!!: 模和平坦模 · 查看更多 »

平衡点

在数学中,平衡点是相对微分方程或差分方程的概念。.

新!!: 模和平衡点 · 查看更多 »

么半範疇

張量範疇(tensor category),或曰么半範疇(monoidal category), 直覺地講,是個配上張量積的阿貝爾範疇(abelian category),可當作環的範疇化。.

新!!: 模和么半範疇 · 查看更多 »

交换环

在抽象代数之分支环论中,一个交换环(commutative ring)是乘法运算满足交换律的环。对交换环的研究称为交换代数学。 某些特定的交换环在下列类包含链中:.

新!!: 模和交换环 · 查看更多 »

交換代數

在抽象代數中,交換代數旨在探討交換環及其理想,以及交換環上的模。代數數論與代數幾何皆奠基於交換代數。交換環中最突出的例子包括多項式環、代數整數環與p進數環,以及它們的各種商環與局部化。 由於概形無非是交換環譜的黏合,交換代數遂成為研究概形局部性質的主要語言。.

新!!: 模和交換代數 · 查看更多 »

交流电功率

交流电功率是交流电做功的功率,即能量在交流电路中流动的速率。 在交流电系统中,例如电感器和电容器之类的储能装置可能会导致能量流动方向的周期性变化。在一个完整周期内,能量在一个方向上的净流动率称为有功功率,而往返于储能装置与电源间的部分称为无功功率。.

新!!: 模和交流电功率 · 查看更多 »

二次型

在数学中,二次型是一些变量上的二次齐次多项式。例如 是关于变量x和y的二次型。 二次型在许多数学分支,包括数论、线性代数、群论(正交群)、微分几何(黎曼测度)、微分拓扑(intersection forms of four-manifolds)和李代数(基灵型)中,占有核心地位。.

新!!: 模和二次型 · 查看更多 »

五引理

在同調代數中,五引理是關於交換圖的一個重要引理。五引理可以被視為兩個相對偶的四引理之組合。此結果不只對阿貝爾範疇成立,也對群範疇成立。.

新!!: 模和五引理 · 查看更多 »

代数

代数是一个较为基础的数学分支。它的研究对象有许多。诸如数、数量、代数式、關係、方程理论、代数结构等等都是代数学的研究对象。 初等代数一般在中學時讲授,介紹代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解變數的概念和如何建立多项式并找出它们的根。 代数的研究對象不僅是數字,还有各種抽象化的結構。例如整數集作為一個帶有加法、乘法和序關係的集合就是一個代數結構。在其中我們只關心各種關係及其性質,而對於「數本身是甚麼」這樣的問題並不關心。常見的代數結構類型有群、环、域、模、線性空間等。并且,代数是几何的总称,代数是还可以用任何字母代替的。 e.g.2-4+6-8+10-12+…-96+98-100+102.

新!!: 模和代数 · 查看更多 »

代数结构

在泛代数中代数结构是在一种或多种运算下封闭的一个或多个集合。 例如,群、环、域、和格的代数结构。更复杂的结构可以被定义为通过引入多个操作,不同的基础集,或通过改变限定公理。更复杂的代数结构的实例包括向量空间,模和代數 (環論)。关于代数结构的的详细情况,参见各个链接。 一个代数结构包含集合及符合某些公理的运算或关系。 集U上定义二元运算形成的系统称为代数系统,如果对于任意a,b∈U,恒有(a·b)∈U。二元运算可推广至多元运算F,则相应的封闭性要求则改为:对于任意a,b,c,d,……∈U,恒有F(a,b,c,d,……)∈U。有的书上对封闭性未作要求,并称之为广群。运算f是一个从A×B→C的映射,若A.

新!!: 模和代数结构 · 查看更多 »

代数拓扑

代数拓扑(Algebraic topology)是使用抽象代数的工具来研究拓扑空间的数学分支。.

新!!: 模和代数拓扑 · 查看更多 »

代數 (環論)

在數學中,交換環上的代數或多元環是一種代數結構,上下文不致混淆時通常逕稱代數。 本頁面中的環都是指有單位的環,並使用么環一詞表示則是不一定有單位的環。.

新!!: 模和代數 (環論) · 查看更多 »

代數整數

在數學裡,代數整數(algebraic integer)是複數中的一类。一个複数α是代数整数当且仅当它是某个個整系數的首一多項式P(x)的根。其中首一(英文:monic)意謂最高冪次項的系數是1。 因此,所有代數整數都是代數數,但並非所有代數數都是代數整數。所有代数整数构成一个环,通常记作\mathbb。 如果P(x)是整係數本原多項式(即系數的最大公因数是1的多项式),但非首一多項式,則P的根都不是代數整數。.

新!!: 模和代數整數 · 查看更多 »

张量代数

在数学中,一个向量空间V的张量代数(tensor algebra),记作T(V)或T·(V),是V上的(任意阶)张量的代数,其乘法为张量积。张量代数左伴随于从代数到向量空间的遗忘函子,在这种意义下它是V上的自由代数;在相应的泛性质的意义下,它是包含V的“最一般的代数”(见下)。 张量代数也具有余代数结构。 注:本文中所有代数都假设是有单位的且结合。.

新!!: 模和张量代数 · 查看更多 »

张量积

在数学中,张量积,记为 \otimes,可以应用于不同的上下文中如向量、矩阵、张量、向量空间、代数、拓扑向量空间和模。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积。 例子: \mathbf \otimes \mathbf \rightarrow \beginb_1 \\ b_2 \\ b_3 \\ b_4\end \begina_1 & a_2 & a_3\end.

新!!: 模和张量积 · 查看更多 »

張量

張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n  維空間內,有  n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.

新!!: 模和張量 · 查看更多 »

引力場

引力場(簡體中文中重--力場一詞特指地球表面的引力場。)是描述一物体在空間中受到万有引力(重力)作用的場,在经典物理学中是一个物理量。.

新!!: 模和引力場 · 查看更多 »

微分算子

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。 当然有理由不单限制于线性算子;例如施瓦茨导数是一个熟知的非线性算子。不过这里只考虑线性的情形。.

新!!: 模和微分算子 · 查看更多 »

德林費爾德模

在數學領域,德林費爾德模或橢圓模是一種特別的模,佈於有限域上的代數曲線的坐標環上。粗略地說,德林費爾德模是複橢圓曲線的複乘法理論之函數域版本。 俄文單詞 штука(英語拼音:shtuka 或 chtouca,源於德文的 Stück,意指物件或東西),又稱F-層,是德林費爾德模的一種延伸,由曲線上的向量叢和其它關乎弗羅貝尼烏斯映射的資料組成。 弗拉基米爾·德林費爾德在1973年發明了德林費爾德模,隨後推廣到 штука,以證明函數域上的 \mathrm(2) 郎蘭茲猜想。洛朗·拉福格藉由研究 n秩 штука的模疊與跡公式,在2002年證出 \mathrm(n) 的情形。.

新!!: 模和德林費爾德模 · 查看更多 »

初等阿貝爾群

在群論中,初等阿貝爾群是有限阿貝爾群,這里的所有非平凡元素都有 p 階而 p 是素數。 通過有限生成阿貝爾群的分類,所有初等阿貝爾群必定有如下形式 對于非負整數 n。這里的 Z/pZ 指示 p 階的循環群(或等價的整數模以 p),而冪符號表示意味著 n 元笛卡爾積。.

新!!: 模和初等阿貝爾群 · 查看更多 »

分式理想

在数学中,特别是交换代数中,分式理想的概念是在对整环的研究中所引入的,并且在戴德金整环的研究中得到丰富。类似于通过给整数引入分母而产生了分数,在整环中,分式理想可认为是为理想引入了的分母。在特定上下文中,为了有所区别,环的普通理想常被强调为整理想。.

新!!: 模和分式理想 · 查看更多 »

單模

在抽象代數中,若一個環 A 上的模 M 其子群只有 \ 及自身,則稱 M 為單模。換言之,環 A 上的單模是 A-模範疇中的單對象。單模又稱不可約模。.

新!!: 模和單模 · 查看更多 »

幂運算(Exponentiation),又稱指數運算,是一種數學運算,表示為 bn。其中,b 被稱為底數,而 n 被稱為指數,其結果為 b 自乘 n 次。同樣地,把 b^n 看作乘方的结果,稱為「 b 的 n 次幂」或「 b 的 n 次方」。 通常指數寫成上標,放在底數的右邊。當不能用上標時,例如在編程語言或電子郵件中,b^n通常寫成b^n或b**n,也可視為超運算,記為bn,亦可以用高德納箭號表示法,寫成b↑n,讀作“ b 的 n 次方”。 當指數為 1 時,通常不寫出來,因為運算出的值和底數的數值一樣;指數為 2 時,可以讀作“ b 的平方”;指數為 3 時,可以讀作“ b 的立方”。 bn 的意義亦可視為: 起始值 1(乘法的單位元)乘上底數(b)自乘指數(n)這麼多次。這樣定義了後,很易想到如何一般化指數 0 和負數的情況:除 0 外所有數的零次方都是 1 ;指數是負數時就等於重複除以底數(或底數的倒數自乘指數這麼多次),即: 以分數為指數的冪定義為b^.

新!!: 模和冪 · 查看更多 »

凱萊-哈密頓定理

在線性代數中,凱萊-哈密頓定理(Cayley–Hamilton theorem)(以數學家阿瑟·凱萊與威廉·卢云·哈密顿命名)表明每個佈於任何交換環上的實或複方陣都滿足其特徵方程式。 明確地說:設 A 為給定的 n \times n 矩陣,並設 I_n 為 n \times n 單位矩陣,則 A 的特徵多項式定義為: 其中 det 表行列式函數。凱萊-哈密頓定理斷言: 凱萊-哈密頓定理等價於方陣的特徵多項式會被其極小多項式整除,這在尋找若尔当标准形時特別有用。.

新!!: 模和凱萊-哈密頓定理 · 查看更多 »

函子

在範疇論中,函子是範疇間的一類映射。函子也可以解釋為小範疇範疇內的態射。 函子首先現身於代數拓撲學,其中拓撲空間的連續映射給出相應的代數对象(如基本群、同調群或上同調群)的代數同態。在當代數學中,函子被用來描述各種範疇間的關係。「函子」(英文:Functor)一詞借自哲學家魯道夫·卡爾納普的用語。卡爾納普使用「函子」這一詞和函數之間的相關來類比謂詞和性質之間的相關。對卡爾納普而言,不同於當代範疇論的用法,函子是個語言學的詞彙。對範疇論者來說,函子則是個特別類型的函數。.

新!!: 模和函子 · 查看更多 »

商环

在環論中,商環(或稱剩餘類環)是環對一個理想的商結構。.

新!!: 模和商环 · 查看更多 »

商群

在數學中,給定一個群G和G的正規子群N,G在N上的商群或因子群,在直覺上是把正規子群N“萎縮”為單位元的群。商群寫為G/N并念作G mod N(mod是模的簡寫)。如果N不是正規子群,商仍可得到,但結果將不是群,而是齊次空間。.

新!!: 模和商群 · 查看更多 »

內射包

在數學中,設 M 為一個含單位元環 R (不一定可交換)上的左模,若左 R-模 E \supset M 是內射模,而且滿足下式 則稱 E 為 M 的一個內射包。類似定義可以照搬至右模的情況。 若模 M 的內射包可以寫成不可分解子模的有限直積,則稱 M 為有限秩的模。.

新!!: 模和內射包 · 查看更多 »

內射分解

在同調代數中,一個阿貝爾範疇 \mathcal 中的對象 A 之內射分解定義為一正合序列 或簡寫成 0 \rightarrow A \rightarrow I^\bullet,使得其中每個 I^n 皆為內射對象。固定對象 A,則任兩個內射分解至多差一個鏈複形的同倫等價。 若 \mathcal 中的每個對象都有內射分解,則稱 \mathcal 有充足的內射元,這類範疇上能以內射分解開展同調代數的研究。典型例子包括:.

新!!: 模和內射分解 · 查看更多 »

內射維度、投射維度與同調維度

投射維度、內射維度與同調維度(又稱整體維度)是交換代數中考慮的重要不變量。.

新!!: 模和內射維度、投射維度與同調維度 · 查看更多 »

內射模

內射模(injective module),在模論中,是具有與有理數 \mathbb(視為 \Z-模)相似性質的模。內射模是投射模的對偶概念,由Reinhold Baer於1940年引進。.

新!!: 模和內射模 · 查看更多 »

全息摄影

全像術(Holography),又稱--,是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者透射的光线可以通过记录胶片完全重建,仿佛物体就在那里一样。通过不同的方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的像可以使人产生立体视觉。.

新!!: 模和全息摄影 · 查看更多 »

典型群

在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“--”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“--”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群 。 和典型李群相对的是例外李群,具有一样的抽象性质,但不属于同一类。.

新!!: 模和典型群 · 查看更多 »

四元數

四元數是由爱尔兰數學家威廉·盧雲·哈密頓在1843年创立出的數學概念。 從明確地角度而言,四元數是複數的不可交換延伸。如把四元數的集合考慮成多維實數空間的話,四元數就代表著一個四维空间,相對於複數為二维空间。 作为用于描述现实空间的坐标表示方式,人们在复数的基础上创造了四元数并以a+bi+cj+dk的形式说明空间点所在位置。 i、j、k作为一种特殊的虚数单位参与运算,并有以下运算规则:i0.

新!!: 模和四元數 · 查看更多 »

四维空间

在物理学和数学中,可將 n 个数的序列理解为一个 n 维空间中的位置。当n.

新!!: 模和四维空间 · 查看更多 »

四维速度

四维速度(Four-velocity)是指物理学中,特别是狭义相对论和广义相对论中,一个物体的四维速度是取代经典意义上的速度(三维矢量)的四维矢量(四维时空中的矢量)。选取四维速度的原因是四维速度在洛伦兹变换下是协变的,而三维速度不是;换句话说,这么选取可以使光速在任意惯性系下保持不变。 相对论理论中一个事件是在四维时空内的坐标描述的,一个物体在时空中运动产生的轨迹曲线是通过固有时这个参数实现参数化的,而这条曲线称作世界线。四维速度是一维时间与三维空间坐标对固有时的改变率所构成的矢量,同时也是世界线的切向矢量。 作为比较,在经典力学中事件是通过它们在每一时刻上在三维空间中的坐标描述的,它们在三维空间中的轨迹是通过时间这个参数实现参数化的。经典速度是三维空间坐标对时间的改变率所构成的矢量,同时也是轨迹的切向矢量。 在狭义相对论的框架中,四维速度的大小(模)总是和光速的大小相等。.

新!!: 模和四维速度 · 查看更多 »

BPS態

在理論物理學中,BPS態大多代表擴充的超對稱代數中、超對稱中心荷Z的質量表現。以量子力學的角度詮釋,若沒有發生對稱性破缺,則其質量必等於Z的模。它在古典真空的模空間中扮演審查的角色,並解決了許多模的問題。 對於帶有中心荷的粒子態,代數結構蘊涵著物理關係 m≧|Q|,即質量將大於中心荷的絕對值。若粒子態是短表示的話,該關係取臨界情形m.

新!!: 模和BPS態 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

新!!: 模和矩阵 · 查看更多 »

环面

没有描述。

新!!: 模和环面 · 查看更多 »

理想数

在数论中,理想数是在某个数域的整数环中表示一个理想的代数数。理想数的概念由恩斯特·库默尔首先引进,并导致理查德·戴德金发展出环的理想的概念。一个整环中的理想被称作主理想当且仅当它是由某个元素的所有倍数组成。根据主理想化定理,一个代数数域中的整环中的所有非主理想的理想在数域扩张成为一个希尔伯特类域时都会成为一个主理想。这表示存在一个类域中的整环中的元素 a,其为一个理想数,即使得 a 与类域中的整环中元素相乘得到的倍数与原来数域的交集就是原来的非主理想。.

新!!: 模和理想数 · 查看更多 »

等变映射

在数学中,一个等变映射(equivariant map)是两个集合之间与群作用交换的一个函数。具体地,设 G 是一个群,X 与 Y 是两个关联的 ''G''-集合。一个函数 f: X → Y 称为等变,如果 对所有 g ∈ G 与 x ∈ X 成立。注意如果其中一个或两个作用是右作用,则等变条件必须适当地修改: 等变映射是 G-集合范畴(对一个取定的 G)中的同态。从而它们也称为 G-映射或 G-同态。G-集合的同构就是等变双射。 等变条件也能理解为下面的交换图表。注意 g\cdot 表示映射取元素 z 得到 g\cdot z。.

新!!: 模和等变映射 · 查看更多 »

等价类

在数学中,假設在一个集合X上定義一个等价关系(用 \sim來表示),则X中的某個元素a的等价类就是在X中等价于a的所有元素所形成的子集: 等价类的概念有助于从已经构造了的集合构造新集合。在X中的给定等价关系 \sim的所有等价类的集合表示为X/ \sim并叫做X除以\sim的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是,如果X是有限的并且等价类都是等势的,则X/ \sim的序是X的序除以一个等价类的序的商。商集被认为是带有所有等价点都识别出来的集合X。 对于任何等价关系,都有从X到X/ \sim的一个规范投影映射\pi,给出为\pi(x).

新!!: 模和等价类 · 查看更多 »

算子

算子(Operator)是从一个向量空间(或模)到另一个向量空间(或模)的映射。 算子对于线性代数和泛函分析都至关重要,它在纯数学和应用数学的许多其他领域中都有应用。 例如,在经典力学中,导数的使用无处不在,而在量子力学中,可观察量由埃尔米特算子表示。 各种算子可以具有包括线性、连续性和有界性等的重要性质。.

新!!: 模和算子 · 查看更多 »

範 (鑄造工具)

,又稱鑄型,是一種鑄造時容納金屬溶液的容器。範的空腔部分名叫「範腔」或「型腔」,而為範腔引入金屬液和排出氣體的管道則稱為「澆注系統」。.

新!!: 模和範 (鑄造工具) · 查看更多 »

紧化 (物理学)

在物理学中,紧致化(或紧化)指改变时空中某些维度的拓扑结构,使其从展开的无限大尺度,变成有限大的周期性结构。.

新!!: 模和紧化 (物理学) · 查看更多 »

纯旋量

在表示论这个数学领域中,特殊正交群的旋量表示中,纯旋量(pure spinor 或单旋量 simple spinor)是能被克利福德代数的最大可能子空间零化的旋量。它们在1930年代被埃利·嘉当为了分类复结构而引进。纯旋量被引入理论物理,1960年代在罗杰·彭罗斯的推动下在自旋几何的研究中变得愈发重要起来;它们在彭罗斯的扭量理论的研究中成为基本对象。.

新!!: 模和纯旋量 · 查看更多 »

线性代数

线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.

新!!: 模和线性代数 · 查看更多 »

在數學中,群是由一個集合以及一個二元運算所組成的,符合下述四个性质(称为“群公理”)的代數結構。这四个性质是封闭性、結合律、單位元和对于集合中所有元素存在逆元素。 很多熟知的數學結構比如數系統都遵从群公理,例如整數配備上加法運算就形成一個群。如果将群公理的公式從具体的群和其運算中抽象出來,就使得人们可以用靈活的方式来處理起源于抽象代數或其他许多数学分支的實體,而同时保留對象的本質結構性质。 群在數學內外各個領域中是無處不在的,这使得它們成為當代數學的组成的中心原理。 群與對稱概念共有基礎根源。對稱群把幾何物體的如此描述物体的對稱特征:它是保持物體不變的變換的集合。這種對稱群,特別是連續李群,在很多學術學科中扮演重要角色。例如,矩陣群可以用來理解在狹義相對論底層的基本物理定律和在分子化學中的對稱現象。 群的概念引發自多項式方程的研究,由埃瓦里斯特·伽罗瓦在1830年代開創。在得到來自其他領域如數論和幾何学的貢獻之后,群概念在1870年左右形成并牢固建立。現代群論是非常活躍的數學學科,它以自己的方式研究群。為了探索群,數學家發明了各種概念來把群分解成更小的、更好理解的部分,比如子群、商群和單群。除了它們的抽象性質,群理論家還從理論和計算兩種角度來研究具體表示群的各種方式(群的表示)。對有限群已經發展出了特別豐富的理論,這在1983年完成的有限簡單群分類中達到頂峰。从1980年代中叶以来,将有限生成群作为几何对象来研究的几何群论,成为了群论中一个特别活跃的分支。.

新!!: 模和群 · 查看更多 »

群的直和

在數學中,群 G 叫做子群的集合 的直和,如果.

新!!: 模和群的直和 · 查看更多 »

群论

在数学和抽象代数中,群论研究名为群的代数结构。 群在抽象代数中具有基本的重要地位:许多代数结构,包括环、-zh-hant:體;zh-hans:域-和向量空间等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。线性代数群(linear algebraic groups)和李群作为群论的分支,在经历了重大的发展之后,已经形成相对独立的研究领域。 群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。 群论中的重要结果,有限单群分类是20世纪数学最重要的结果之一。该定理的证明是集体努力的结果,它的证明出现在1960年和1980年之间出版的超过10,000页的期刊上。.

新!!: 模和群论 · 查看更多 »

結合代數

在數學裡,結合代數是指一向量空間(或更一般地,一模),其允許向量有具分配律和結合律的乘法。因此,它為一特殊的代數。結合代數,是一種代數系統,類似於群、環、域,而更接近於環。仿照由實數來構造複數的方法,可用複數來構造新的數。.

新!!: 模和結合代數 · 查看更多 »

環的局部化

在抽象代數中,局部化是一種在環中形式地添加某些元素的倒數,藉以建構分式的技術;由此可透過張量積構造模的局部化。範疇的局部化過程類似,但此時加入的是態射之逆元素,以使得這些態射在局部化以後變為同構。 局部化在環論與代數幾何中佔有根本地位,範疇的局部化則引出導範疇的概念,在高等數學中有眾多應用。.

新!!: 模和環的局部化 · 查看更多 »

点积

在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

新!!: 模和点积 · 查看更多 »

特征分解

线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。.

新!!: 模和特征分解 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

新!!: 模和特征值和特征向量 · 查看更多 »

直积

在數學中,經常定義已知對象的直積(direct product)來給出新對象。例子有集合的乘積(參見笛卡爾積),群的乘積(下面描述),環的乘積和其他代數結構的乘積。拓撲空間的乘積是另一個例子。.

新!!: 模和直积 · 查看更多 »

Ext函子

在同調代數中,Ext 函子是 Hom 函子的導函子。此函子首見於代數拓撲,但其應用遍佈許多領域。.

新!!: 模和Ext函子 · 查看更多 »

联络

在幾何之中,聯絡是一點所對應的空間與另一點所對應的空間之間的轉換。這種轉換是沿著一曲線(族)的連續地變化,遵循平行性及邏輯上的一致性。在現代幾何中,依照不同的空間,可定義出好幾種不同的聯絡。 例如最常見的仿射聯絡,即是在流形上由一點上切空間,到另一點上切空間,沿著一條曲線的轉換。彷射聯絡可以用來定義協變導數,推廣了向量空間中方向導數的概念。 聯絡是現代幾何中一個應用範圍廣泛的核心概念,因為藉由聯絡,在一個幾何實體中,不同兩點上的局部幾何空間(可理解為鄰域),這兩者間的元素得以互相比較。 聯絡使得幾何不變量可以表述為能夠顯現出其本質的形式,像是曲率(詳見曲率張量及曲率形式)及挠率等,都是由聯絡所導出的。.

新!!: 模和联络 · 查看更多 »

預可加範疇

在範疇論中,一個預可加範疇是使得任兩個對象間的態射集\mathrm(A,B)帶有交換群結構,並使得態射合成為雙線性運算之範疇。 形式地說,預可加範疇是在交換群的么半範疇上濃化的範疇。預加法範疇有時亦稱Ab-範疇,其中的Ab是交換群範疇的縮寫。舊文獻有時也將預加法範疇稱為加法範疇;在此則採當代觀點,區別預加法範疇與可加範疇。 一般而言,固定一個交換環k,我們可以定義k-預可加範疇為在k-模的么半範疇上濃化的範疇,即:使任兩個對象間的態射集\mathrm(A,B)為k-模,並使態射合成為k上的雙線性運算之範疇。取k.

新!!: 模和預可加範疇 · 查看更多 »

表示论

表示論是數學中抽象代數的一支。旨在將抽象代数结构中的元素「表示」成向量空間上的線性變換,并研究这些代数结构上的模,藉以研究結構的性質。略言之,表示論將一代數對象表作較具體的矩陣,並使得原結構中的代数运算對應到矩陣加法和矩陣乘法。此法可施於群、結合代數及李代數等多種代數結構;其中肇源最早,用途也最廣的是群表示論。設G為群,其在域F(常取複數域F.

新!!: 模和表示论 · 查看更多 »

行列式

行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.

新!!: 模和行列式 · 查看更多 »

规范场论

规范场论(Gauge Theory)是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论。非交换对称群(又称非阿贝尔群)的规范场论最常見的例子为杨-米尔斯理论。物理系統往往用在某种变换下不变的拉格朗日量表述,当变换在每一时空点同时施行,它们有全局对称性。规范场论推广了这一思想,它要求拉格朗日量必须也有局部对称性—应该可以在时空的特定区域施行这些对称变换而不影响到另外一个区域。这个要求是广义相对论的等效原理的一个推广。 规范“对称性”反映了系统表述的一个冗余性。 规范场论在物理学上的重要性,在于其成功為量子电動力学、弱相互作用和强相互作用提供了一个统一的数学形式化架构——标准模型。這套理論精确地表述了自然界的三種基本力的实验预测,它是一个规范群为SU(3) × SU(2) × U(1)的规范场论。像弦论这样的现代理论,以及广义相对论的一些表述,都是某种意义上的规范场论。 有时,规范对称性一词被用于更广泛的含义,包括任何局部对称性,例如微分同胚。该术语的这个含义不在本条目使用。.

新!!: 模和规范场论 · 查看更多 »

諾特模

諾特模是抽象代數中一類滿足升鏈條件的模,定義方式類似諾特環。.

新!!: 模和諾特模 · 查看更多 »

譜序列

在同調代數中,譜序列是一種藉著逐步逼近以計算同調或上同調群的技術,由讓·勒雷在1946年首創。其應用見諸代數拓撲、群上同調與同倫理論。.

新!!: 模和譜序列 · 查看更多 »

谷山-志村定理

谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(数论中用到的某种周期性全纯函数)之间的重要联系。定理的证明由英國數學家安德鲁·怀尔斯(Andrew John Wiles)、理查·泰勒(Richard Taylor)、法國數學家克里斯多福·布勒伊(Christophe Breuil)、美國數學家布萊恩·康萊德(Brian Conrad)和佛瑞德·戴蒙德(Fred Diamond)所完成。 若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列 这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。谷山-志村定理说:.

新!!: 模和谷山-志村定理 · 查看更多 »

贝利-波尔温-普劳夫公式

贝利-波尔温-普劳夫公式(BBP公式)提供了一个计算圓周率π的第n位二进制数的(spigot algorithm)。这个求和公式是在1995年由西蒙·普勞夫提出的,并以公布这个公式的论文作者大卫·贝利(David H. Bailey)、(Peter Borwein)和普勞夫的名字命名。在论文发表之前,普勞夫已将此公式在他的网站上公布。这个公式是: 这个公式的发现曾震惊学界。数百年来,求出π的第n位小数而不求出它的前n-1位曾被认为是不可能的。 自从这个发现以来,发现了更多的无理数常数的类似公式,它们都有一个类似的形式: 其中α是目标常数,p和q是整系数多项式,b ≥ 2是整数的数制。 这种形式的公式被称为BBP式公式(BBP-type formulas)。由特定的p,q和b可组合出一些著名的常数。但至今尚未找出一种系统的算法来寻找合适的组合,而已知的公式多是通过得出的。.

新!!: 模和贝利-波尔温-普劳夫公式 · 查看更多 »

輾轉相除法

在数学中,辗转相除法,又称欧几里得算法(Euclidean algorithm),是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。 两个整数的最大公约数是能够同时整除它们的最大的正整数。辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。例如,252和105的最大公约数是21();因为,所以147和105的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如。这个重要的結論叫做貝祖定理。 辗转相除法最早出现在欧几里得的《几何原本》中(大约公元前300年),所以它是现行的算法中歷史最悠久的。这个算法原先只用来处理自然数和几何长度(相當於正實數),但在19世纪,辗转相除法被推广至其他类型的數學對象,如高斯整数和一元多项式。由此,引申出欧几里得整环等等的一些现代抽象代数概念。后来,辗转相除法又扩展至其他数学领域,如纽结理论和多元多项式。 辗转相除法有很多应用,它甚至可以用来生成全世界不同文化中的传统音乐节奏。在现代密码学方面,它是RSA算法(一种在电子商务中广泛使用的公钥加密算法)的重要部分。它还被用来解丢番图方程,比如寻找满足中国剩余定理的数,或者求有限域中元素的逆。辗转相除法还可以用来构造连分数,在施图姆定理和一些整数分解算法中也有应用。辗转相除法是现代数论中的基本工具。 辗转相除法处理大数时非常高效,如果用除法而不是减法实现,它需要的步骤不会超过较小数的位数(十进制下)的五倍。拉梅于1844年证明了这点,同時這也標誌著计算复杂性理论的開端。.

新!!: 模和輾轉相除法 · 查看更多 »

霍赫希尔德同调

数学中,霍赫希尔德同调(Hochschild homology)是环上结合代数的同调论。对某些函子也有一个霍赫希尔德同调。这是以德国数学家格哈德·霍赫希尔德(Gerhard Hochschild)冠名的。.

新!!: 模和霍赫希尔德同调 · 查看更多 »

阿廷模

阿廷模是抽象代數中一類滿足降鏈條件的模。.

新!!: 模和阿廷模 · 查看更多 »

阿貝爾範疇

在數學中,阿貝爾範疇(或稱交換範疇)是一個能對態射與對象取和,而且核與上核存在且滿足一定性質的範疇;最基本的例子是阿貝爾群構成的範疇Ab。阿貝爾範疇是同調代數的基本框架。.

新!!: 模和阿貝爾範疇 · 查看更多 »

阿贝尔群

阿貝爾群(Abelian group)也稱爲交換群(commutative group)或可交換群,它是滿足其元素的運算不依賴於它們的次序(交換律公理)的群。阿貝爾群推廣了整數集合的加法運算。阿貝爾群以挪威數學家尼尔斯·阿貝爾命名。 阿貝爾群的概念是抽象代數的基本概念之一。其基本研究對象是模和向量空間。阿貝爾群的理論比其他非阿貝爾群簡單。有限阿貝爾群已經被徹底地研究了。無限阿貝爾群理論則是目前正在研究的領域。.

新!!: 模和阿贝尔群 · 查看更多 »

链复形

数学上,同调代数领域中的一个链复形(A_\bullet, d_\bullet)是一个交换群或者模的序列A0, A1, A2...

新!!: 模和链复形 · 查看更多 »

量子力學的數學表述

量子力学的数学表述是对量子力学进行严谨描述的数学表述体系。与20世纪初发展起来的旧量子论的数学形式不同,它使用了一些抽象的代数结构,如无穷维希尔伯特空间和这些空间上的算子。这些结构中有许多源于泛函分析。这一纯粹数学研究领域的发展过程既平行于又受影响于量子力学的需要。简而言之,物理可观察量的值,如能量和动量的值不再作为相空间上的函数值,而是作为本征值,或者更为精确地来说是希尔伯特空间中线性算子的谱值。 这一表述体系一直沿用至今。该体系的核心为“量子态”和“可观察量”这两个概念。对于原子尺度的系统来说,这两个概念与之前用来描述物理现实的模型大相径庭。虽然数学上允许对许多量的计算结果进行实验测量,但是实际上,在对于符合一定条件的两个物理量同时进行精确测量时,却存在一个理论性限制——不确定性原理。这一原理由维尔纳·海森堡通过思想实验首次阐明,且在该体系中以可观察量的不可交换性进行表述。 在量子力学作为一支独立理论形成之前,物理学中用到的数学理论主要是以微积分为源头、后来又添以微分几何与偏微分方程的数学分析。统计力学中还用到概率论。几何直观在这两个理论中扮演重要角色。相对论中的许多概念和方法也是基于几何理论。量子物理学中对于实验现象的一系列不同以往的理解在1895年到1915年间开始逐步形成。其中具有代表性的思想为波粒二象性。但在量子理论形成之前的10至15年中,物理学家仍然在经典物理学的框架内思考量子理论,所基于的数学结构也是完全相同的。其中具有代表性的例子是玻尔-索末菲量子化条件。这一原理完全建构于经典框架中的相空间。.

新!!: 模和量子力學的數學表述 · 查看更多 »

自同态

在数学中,自同态是从一个数学对象到它本身的态射(或同态)。例如,向量空间V的自同态是线性映射ƒ: V → V,而群G的自同态则是群同态ƒ: G → G,等等。一般地,我们可以讨论任何范畴中的自同态,在集合范畴中,自同态就是从集合S到它本身的函数。 在任何范畴中,X的任何两个自同态的复合也是X的自同态。于是可以推出,X的所有自同态的集合形成了一个幺半群,记为End(X)(或EndC(X),以强调范畴C)。 X的可逆自同态称为自同构。所有自同构的集合是End(X)的一个子群,称为X的自同构群,记为Aut(X)。在以下的图中,箭头表示蕴含: |- | align.

新!!: 模和自同态 · 查看更多 »

自由對象

在數學中,自由對象是抽象代數中的基本概念。就其通於各種代數結構(帶有限操作)而言,它也屬泛代數的一支,例子包括自由群、張量代數與自由格。在範疇論的框架下,可以將自由對象推廣為自由函子,這是遺忘函子的左伴隨函子。.

新!!: 模和自由對象 · 查看更多 »

自由群

在數學中,一個群 G 被稱作自由群,如果存在 G 的子集 S 使得 G 的任何元素都能唯一地表成由 S 中元素及其逆元組成之乘積(在此不論平庸的表法,例如 st^.

新!!: 模和自由群 · 查看更多 »

長度 (模論)

在數學中,設 A 為環,一個 A-模 之長度是一個整數(包括無窮大),它推廣了向量空間的維度。有限長度的模與有限維向量空間有許多共通性。.

新!!: 模和長度 (模論) · 查看更多 »

蛇引理

在同調代數中,蛇引理是構造長正合序列的關鍵工具,此引理在任何阿貝爾範疇中皆成立。依此構造的同態通常稱作連結同態。.

新!!: 模和蛇引理 · 查看更多 »

雅各布森根

在抽象代数之分支环理论中,一个环 R 的雅各布森根(Jacobson radical)是 R 的一个理想,包含在某种意义上“与零接近”的那些元素。.

新!!: 模和雅各布森根 · 查看更多 »

雙線性形式

在域 F 中,向量空間 V 的雙線性形式指的是一个V × V → F 上的线性函数 B, 满足: 都是线性的。這個定義也適用於交換環的模,这时线性函数要改为模同态。 注意一個雙線性形式是特別的双线性映射。.

新!!: 模和雙線性形式 · 查看更多 »

F理論

F理論(F-theory)為弦論衍生出的詞彙,可視為M理論(Mother-theory)的伴侶,但意義則有所不同。大略來說,F理論是源自IIB型弦理論 ,並藉由非微擾方式成立的。此外,IIB型弦論則是成效於軸子-伸縮子場(axio-dilaton field)。.

新!!: 模和F理論 · 查看更多 »

Verma模

Verma模(Verma module)是李代數表示理論中的基本研究對象,其名取自Daya-Nand Verma。Verma模之間的態射相應於旗流形上的不變微分算子。 可用Verma模來證明以下命題:最高權為\lambda的最高權表示的維數有限,若且僅若\lambda是支配整權(dominant integral weight)。.

新!!: 模和Verma模 · 查看更多 »

抽象代数

抽象代数作为数学的一门学科,主要研究对象是代数结构,比如群、环、-zh-hans:域;zh-hant:體-、模、向量空间、格與域代数。「抽象代數」一詞出現於20世紀初,作為與其他代數領域相區別之學科。 代數結構與其相關之同態,構成數學範疇。範疇論是用來分析與比較不同代數結構的強大形式工具。 泛代數是一門與抽象代數有關之學科,研究將各類代數視為整體所會有的性質與理論。例如,泛代數研究群的整體理論,而不會研究特定的群。.

新!!: 模和抽象代数 · 查看更多 »

抽象代数逻辑

抽象代数逻辑(AAL)是研究代数类关联于逻辑系统的方式和这些代数类如何与逻辑系统交互的数理逻辑领域。.

新!!: 模和抽象代数逻辑 · 查看更多 »

投射分解

在同調代數中,一個阿貝爾範疇 \mathcal 中的對象 A 之投射分解定義為一個正合序列 或簡寫成 P_\bullet \rightarrow A \rightarrow 0,使得其中每個 P_n 皆為投射對象。對任一對象 A,任兩個投射分解至多差一個鏈複形的同倫等價。 若 \mathcal 中的每個對象都有投射分解,則稱 \mathcal 有充足的投射元,這類範疇上能以投射分解開展同調代數的研究。典型例子包括:.

新!!: 模和投射分解 · 查看更多 »

柯西積分公式

柯西积分公式是数学中复分析的一个重要结论,以十九世纪法国数学家奥古斯丁·路易·柯西命名。柯西积分公式说明了任何一个闭合区域上的全纯函数在区域内部的值完全取决于它在区域边界上的值,并且给出了区域内每一点的任意阶导数的积分计算方式。柯西积分公式是复分析中全纯函数“微分等同于积分”特性的表现。而在实分析中这样的结果是完全不可能达到的。 这个公式是柯西在1831年证明的。柯西在同年10月11日首次将其发表,并将它写入了1841年发表的《分析与数学物理习题集》(Exercices d'analyse et de physique mathématique)一书中。.

新!!: 模和柯西積分公式 · 查看更多 »

推出 (范畴论)

在范畴论中,一个数学领域, 推出(也称为纤维餘积、纤维和、共合和或餘笛卡尔方块)是由具有公共定义域的两个态射 f: Z → X 与 g: Z → Y 组成的图表的餘极限。 推出是拉回的范畴对偶。.

新!!: 模和推出 (范畴论) · 查看更多 »

李代数上同调

在数学中,李代数上同调是李代数的一种上同调理论,由和艾伦伯格为了对紧李群的拓扑空间的上同调进行代数构造而建立。在上文提及的论文中,一个特定的被称作的特殊复形,在李代数的模上定义,而其上同调则以一般形式被构造。.

新!!: 模和李代数上同调 · 查看更多 »

李代数胚

在数学中,李代数胚(Lie Algebroid)在李群胚理论中的角色恰如李代数在李群理论中的角色:将整体问题减化为无穷小情形。就像李群胚可以视为“具有许多对象的李群”,李代数胚可视为“具有许多对象的李代数”。 确切地说,一个李代数胚是三元组 (E,, \rho),其中 E 为流形 M 上一个向量丛, 是截面 \Gamma (E) 组成的模上的一个李括号,向量丛同态 \rho: E\rightarrow TM 称为锚。这里TM 是 M 的切丛。锚与李括号满足莱布尼兹法则: 这里 X,Y \in \Gamma(E), f\in C^\infty(M) 和 \rho(X)f 是 f 沿着向量场\rho(X) 的导数。从而 对任何 X,Y \in \Gamma(E)。.

新!!: 模和李代数胚 · 查看更多 »

核 (代数)

在归入线性代数的各种数学分支中,同态的核测量同态不及于单射的程度。 核的定义在不同上下文中采用不同的形式。但是在所有形式中,同态的核是平凡的(在与那个上下文有关的意义上),当且仅当这个同态是单射。同态基本定理(或第一同构定理)是应用于核所定义的商代数的采用了各种形式的一个定理。.

新!!: 模和核 (代数) · 查看更多 »

标量乘法

标量乘法(scalar multiplication)是線性代數中向量空間的一種基本運算(更廣義的,是抽象代數的一個模))。在直覺上,將一個實數向量和一個正的實數進行标量乘法,也就是將其長度乘以此标量,方向不變。标量一詞也從此用法而來:可將向量缩放的量。标量乘法是將標量和向量相乘,結果得到一向量,和內積將兩向量相乘,得到一純量不同。.

新!!: 模和标量乘法 · 查看更多 »

森田等价

在抽象代数中,森田等价(Morita equivalence)是定义在环之间的一个等价关系,这个等价保持许多环论性质。以日本数学家命名,他在1958年定义了这个等价关系以及对偶性的一个类似概念。.

新!!: 模和森田等价 · 查看更多 »

模 (消歧义)

模,可以指.

新!!: 模和模 (消歧义) · 查看更多 »

欧拉公式

欧拉公式(Euler's formula,又稱尤拉公式)是在複分析领域的公式,将三角函数與複數指数函数相关联,因其提出者莱昂哈德·欧拉而得名。尤拉公式提出,對任意實数x,都存在 其中e是自然對数的底數,i是虛數單位,而\cos和\sin則是餘弦、正弦對應的三角函数,参数x則以弧度为单位。這一複數指數函數有時還寫作\operatorname(x)(cosine plus i sine,余弦加i正弦)。由於該公式在x為複數時仍然成立,所以也有人將這一更通用的版本稱為尤拉公式。 当 x.

新!!: 模和欧拉公式 · 查看更多 »

正合序列

在數學裡,尤其是在群論、環與模理論、同調代數及微分幾何等數學領域中,正合序列(或釋作正合列或恰當序列)是指一個由對象及其間的態射所組成的序列,該序列中的每一個態射的像都恰好是其下一個態射的核。正合序列可以為有限序列或無限序列。 正合序列於同調代數中居於核心地位,其中特別重要的一類是短正合序列。.

新!!: 模和正合序列 · 查看更多 »

正规矩阵

在数学中,正规矩阵 \mathbf是与自己的共轭转置交换的复系数方块矩阵,也就是说, \mathbf满足 其中\mathbf^*是\mathbf的共轭转置。 如果\mathbf是实系数矩阵,则\mathbf^*.

新!!: 模和正规矩阵 · 查看更多 »

正规态射

在範疇論中,正规態射是一類可以自然地分解成單射與滿射的態射。使所有態射皆為正规態射的範疇稱為正规範疇。.

新!!: 模和正规态射 · 查看更多 »

法瓦德常數

法瓦德常數(Favard constant)也稱為阿希耶澤爾-克林-法瓦德常數為一數學常數,r階的法瓦德常數定義如下 法瓦德常數得名自法國數學家及蘇聯數學家及。 K1.

新!!: 模和法瓦德常數 · 查看更多 »

泛包絡代數

在數學中,我們可以構造任意李代數 L 的泛包絡代數 U(L)。李代數一般並非結合代數,但泛包絡代數則是帶乘法單位元的結合代數。李代數的表示理論可以理解為其泛包絡代數的表示理論。在幾何上,泛包絡代數可以解釋為李群上的左不變微分算子。.

新!!: 模和泛包絡代數 · 查看更多 »

深度 (模論)

在交換代數中, 深度是交換環與模的一種不變量,它可以由正則序列定義,或以同調代數中的Ext函子刻劃。.

新!!: 模和深度 (模論) · 查看更多 »

準素分解

在交換代數中,準素分解將一個交換環的理想(或模的子模)唯一地表成準素理想(或準素子模)之交。這是算術基本定理的推廣,能用以處理代數幾何中的情況。.

新!!: 模和準素分解 · 查看更多 »

準素理想

在交換代數中,一個交換環 R 裡的理想 Q 若滿足 R/Q \neq (0),而且其中每個零除數都是冪零的,則稱之為準素理想。另一種等價的刻畫是:對任意 a,b \in R,若 ab \in Q,則或有 a \in Q,或 \exists n \, b^n \in Q。 若設 P 為 Q 的根(必為素理想),則也稱 Q 為P-準素理想。 任何素理想都是準素理想。在整數環 \Z 中,準素理想對應到素數的冪。 一般而言,對任何 R-模 M,定義 其中 \mathrm(m).

新!!: 模和準素理想 · 查看更多 »

有单位的

在數學裡,一代數結構是有单位的(unital 或 unitary),當它含有一乘法单位元素,即含有一元素 1,對所有此代數結構內的元素 x ,有 1x.

新!!: 模和有单位的 · 查看更多 »

有限生成

在抽象代數中,有限生成意謂一個代數結構中存在有限多個元素 x_1, \ldots, x_n,使得每個元素都能由這些元素的代數運算生成;或者形式地說,謂該結構能表成有限個生成元的自由對象的商(在適當的範疇內)。這類對象有時也稱為有限型的。 以下是常見的特例:.

新!!: 模和有限生成 · 查看更多 »

戶田定理

在理論計算機科學的複雜度理論這一分支中,戶田定理是一個重要的結果,它指出在多項式譜系和之間的內在聯繫: 根據戶田定理,多項式譜系內的所有問題均可以在多項式時間內歸約為求解多項式個(實際上可以規約為1個)“求令給定布爾表達式為真的可能賦值的數量”(#SAT)問題(參見:布尔可满足性问题)。戶田定理的証明由在1991年給出,並在1998年為証明者贏得了當年的哥德爾獎。(在1991年的該篇論文中,戶田誠之助實際上證明了PH \subseteq P^(參見:PP),而上述結果是這個結果的一個自然推論。) 戶田定理的証明主要包含以下兩部分:.

新!!: 模和戶田定理 · 查看更多 »

数学符号表

數學中,有一組常在數學表達式中出現的符號。數學工作者一般熟悉這些符號,所以使用時不一定會加以說明。但绝大多数常见的符号都有相应标准或Unicode符号说明等加以规范。下表列出了很多常見的數學符號,並附有名稱、讀法和應用領域。第三欄給出一個非正式的定義,第四欄提供簡單的例子。 注意,有時候不同的數學符號有相同含義,而有些數學符號在不同的語境中會有不同的含義。.

新!!: 模和数学符号表 · 查看更多 »

整性

整性是交換代數中的概念,用于描述在有理数域的某些扩域中,某些元素是否有类似于整数的性质。元素的整性(是否为整元素)本质上只依赖于環的概念。整性與環的整擴張推廣了代數數與代數擴張的概念。.

新!!: 模和整性 · 查看更多 »

托勒密定理

在数学中,托勒密定理是欧几里得几何学中的一个关于四边形的定理。托勒密定理指出凸四边形两组对边乘积之和不小于两条对角线的乘积,当且仅当四边形为圆内接四边形,兩組和相同。或退化为直线以取得(这时也称为欧拉定理)。 狭义的托勒密定理也可以叙述为:若且僅若圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。则这个凸四边形内接于一圆。托勒密定理实际上也可以看做一种判定圆内接四边形的方法。.

新!!: 模和托勒密定理 · 查看更多 »

拉格朗日恒等式

在代数中,以约瑟夫·拉格朗日命名的拉格朗日恒等式是: \begin \biggl(\sum_^n a_k^2\biggr) \biggl(\sum_^n b_k^2\biggr) - \biggl(\sum_^n a_k b_k\biggr)^2 &.

新!!: 模和拉格朗日恒等式 · 查看更多 »

态射

数学上,态射(morphism)是两个数学结构之间保持结构的一种过程抽象。 最常见的这种过程的例子是在某种意义上保持结构的函数或映射。例如,在集合论中,态射就是函数;在群论中,它们是群同态;而在拓扑学中,它们是连续函数;在泛代数(universal algebra)的范围,态射通常就是同态。 对态射和它们定义于其间的结构(或对象)的抽象研究构成了范畴论的一部分。在范畴论中,态射不必是函数,而通常被视为两个对象(不必是集合)间的箭头。不像映射一个集合的元素到另外一个集合,它们只是表示域(domain)和陪域(codomain)间的某种关系。 尽管态射的本质是抽象的,多数人关于它们的直观(事实上包括大部分术语)来自于具体范畴的例子,在那里对象就是有附加结构的集合而态射就是保持这种结构的函数。.

新!!: 模和态射 · 查看更多 »

怀特海问题

怀特海问题,是群论的一个重要问题,由美国数学家约翰·怀特海在1950年代提出。 给定环\Lambda上的模A, B, R,投射模P以及正合列R \rightarrow P \twoheadrightarrow A其中第一个箭头由单同态\mu实现,记 \mathrm_(A, B).

新!!: 模和怀特海问题 · 查看更多 »

重定向到这里:

模 (數學)模論

传出传入
嘿!我们在Facebook上吧! »