徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

天球

指数 天球

天球(英語:Celestial sphere),是在天文學和導航上想出的一個與地球同圓心,並有相同的自轉軸,半徑無限大的球。天空中所有的物體都可以當成投影在天球上的物件。地球的赤道和地理極點投射到天球上,就是天球赤道和天極。天球是位置天文學上很實用的工具。 在亞里斯多德和托勒密的模型,天球想像成實際的物體,而不僅僅是一個幾何的投影(參見天球模型)。.

151 关系: A1689B11占星術和科學南十字座南天 (天球)南回归线南极南极洲升交點黃經反日點參宿四參考平面合 (天體位置)夏季大三角大犬座大犬座ο²天宫图天体测量学天倉五天琴座天球坐标系统天球赤道天箭座天蝎座天體命名天體的極天鵝座X-1天鉤五天極天樞天文学史天文學辭彙天文定位太陽位置太陽系探測器列表夜空子午圈定位圈宣夜說室女座星流宇宙学宇宙雜訊安提基特拉机械尺 (天文)尼古拉·哥白尼岩居由希子巡天調查中國發明中西星名對照表平方度...亚里士多德人马座五車二事件視界望遠鏡仰儀仙后座伊本·魯世德伊斯蘭黃金時代张衡众友仙人位置角依巴谷星表地心说地球地球公转地球自转北天 (天球)北極 (天文)分點分至圈周日運動哈勃超深空冲力说几何学全球災難危機光速勒托回归年王蕃球面天文学类星体約翰·拜耳紅移維斯托·斯里弗織女一纪限仪经度環形球儀環狀電流用於數學、科學和工程的希臘字母牧夫座物理学史狐狸座白道角宿一角分视星等超新星鹿豹座黃經黃緯黃道坐標系黃道帶黃道面黃極 (天文)黄道齊彥槐轨道 (力学)赤纬赤经赤道赤道坐標系統赤道仪银河系自行蛇夫座考泰斯與考托佩斯HE 0437-5439NGC 2451NGC 2477NGC 4151NGC 6231NGC天體表SN 393StellariumWMAP冷斑點恒星年恒星时歲差 (天文)水委一活动星图測天圖漫射紅外線背景輻射實驗潮汐加速望遠鏡、天文台和觀測技術年表望远镜座星座星座家族星座列表星圖星等春季大弧線昴宿增十二浑象方位天文學日晷散亂流星拱極星拱極星座 扩展索引 (101 更多) »

A1689B11

A1689B11是星系團阿貝爾1689內的一個極為古老的螺旋星系,在天球上位於室女座。A1689B11的極細盤面相當低溫,但星系內的恆星形成率是本銀河系的30倍。A1689B11距離地球約110億光年,即形成於大爆炸之後26億年。A1689B11是至2017年為止距離地球最遠且最古老的螺旋星系。.

新!!: 天球和A1689B11 · 查看更多 »

占星術和科學

占星術由許多不同的信想組成,認為天文現象與人類世界中的事件和人格描述之間存在著關係。占星術因為沒有描述宇宙的能力,不被科學界認同。已經進行過對占星術的科學測試,沒有證據顯示傳統的占星術意圖支援前述的前提。 占星術可否證性的預測,已被證偽。最著名的測試由領導,委員會的成員包括科學家和占星家。他得出的結論是的預測沒有比機會更好。占星家兼心理學家Michel Gauquelin宣稱發現對運動員出生日期的統計支持"",但在進一步的研究中不能複製它。後繼的研究召集人聲稱Gauquelin曾經建議刪除納入研究的特定個體來試圖影響研究的標準。也有人暗示,Geoffrey Dean,的出生日期是由父母(在1950年之前)提供的,可能已經造成明顯的影響。 占星術未能證實它在可控制研究的有效性,並且也沒有科學有效性,因此被認定為偽科學 。基於生物學和物理學的基本方面,沒有行動機制的提議,恆星和行星的位置和運動可能會影響地球上的仁和事,但占星家反駁說他們並沒有充分的瞭解。.

新!!: 天球和占星術和科學 · 查看更多 »

南十字座

南十字座(Crux,)或稱十字架座,位於半人馬座和蒼蠅座之間,是全天88個星座中最小,但最有特色的一個。它的英文名稱源自拉丁文的十字,它的造型就以十字形為主,在北回歸線以南的地方皆可看到整個星座,因此被稱為南十字,以與北十字(天鵝座的中心部分)有所區別。.

新!!: 天球和南十字座 · 查看更多 »

南天 (天球)

南天球或南天是天空中旋轉着的天文區域的一部份。它是天球的南半球。.

新!!: 天球和南天 (天球) · 查看更多 »

南回归线

南回归线(Capricorni tropicus、tropique du Capricorne、西班牙语、葡萄牙语: tropico de Capricornio、 tropic of capricorn、südlicher Wendekreis)是太阳直射点回归运动时移到最南时所在的纬线,其纬度数值等于黄赤交角,大约在南纬23度26分。南回歸線通過的國家有:南美洲-巴西、巴拉圭、阿根廷、智利。非洲-馬達加斯加、莫三比克、南非共和國、波札那、那米比亞。大洋洲-澳大利亞、社會群島。.

新!!: 天球和南回归线 · 查看更多 »

南极

南極(south pole)是根據地球的旋轉方式決定的最南點。它通常表示地理上的南極區域,有一個固定的位置。按照國際上通行的概念,南緯60度以南的地區稱為南極,它是南大洋及其島嶼和南極大陸的總稱,總面積約6500萬平方公里。.

新!!: 天球和南极 · 查看更多 »

南极洲

南极洲(Antarctica)是地球最南端的洲,位於南半球的南極區,是地理南极的所在地。南极洲大部分区域都在南極圈内,四周被南冰洋环绕。南极洲是世界上的第五大洲,其面积约为1400万平方公里,仅次于亞洲、非洲、北美洲和南美洲,是大洋洲的两倍。除了南极半岛最北端的部分区域之外,全洲約98%的地方都被平均厚度1.9公里的冰层覆盖着。 南極洲是地球上最寒冷、乾燥、多風的大洲,是唯一橫跨所有經線的洲,也是平均海拔最高的大洲。它沿岸地区的年降水量仅有200毫米,内陆地区更少。到了第三季(一年中最寒冷的季节)时,南极洲的平均温度低至-63℃,最低温度可達-89.2℃。南極洲的本地物种有各类藻類、细菌、真菌、植物(包括苔藓)、原生生物以及一些可以适应寒冷环境的动物,例如企鵝、海豹、線蟲、緩步動物、蟎等。南极洲沒有永久居民,但每年居住在這裡的科研人员有一千至五千人。 儘管很久之前已經有關於「未知的南方大陸」(Terra Australis)的神話故事與臆想,但直至1820年,俄羅斯探險家米哈伊尔·拉扎列夫和法比安·戈特利布·馮·別林斯高晉乘着沃斯托克號和战船来到芬布爾冰架时,人类才第一次目睹它的真容。由於南极洲氣候惡劣、資源缺乏以及地理孤立性,南極洲在十九世纪并沒有引起人們的注目。 南极洲现在是法律意义上的共管领土,由南极条约体系的成员国协商管辖。1959年,12个国家签署了《南极条约》,随后有38个国家签署。該條約意在支持科學研究及保護南極生物地理分布区,并禁止在南极洲进行的一切军事活动、核爆炸试验以及处理放射物的行为。截至2016年,南极洲已建有135座常设科學考察站,陆续吸引了四千多名来自世界各地的科學家到這裡進行科學實驗。.

新!!: 天球和南极洲 · 查看更多 »

升交點黃經

升交點黃經(符號是☊ 或 Ω)是用來具體描述天體在空間中軌道的軌道要素之一。它是由參考方向(經度原點 )起始,在參考平面上量度至昇交點的角度。通常被做為經度原點和參考平面的有:.

新!!: 天球和升交點黃經 · 查看更多 »

反日點

反日點是在天球上正好在太陽對面,觀測者想像中的一個點Tim Herd.

新!!: 天球和反日點 · 查看更多 »

參宿四

参宿四(Betelgeuse),也就是拜耳命名法中著名的獵戶座α(α Orionis或α Ori),是全天第九亮星,也是獵戶座第二亮星,只比鄰近的参宿七(獵戶座β)暗淡一點。它有著明顯紅色的半規則變星,視星等在0.2至1.2等之間變化著,是變光幅度最大的一等星。這顆恆星標示著冬季大三角的頂點和冬季六邊形的中心。 在分類上,参宿四是一顆紅超巨星,並且是已知最大和最亮的恆星之一。如果它位於太陽系的中心,它的表面會超越小行星帶,並可能抵達並超越木星的軌道,完全地席捲掉水星、金星、地球和火星。但是,在上個世紀對参宿四的距離估計從180光年至1,300光年不等,因此對其直徑、光度和質量的估計是很難被證實的。目前認為参宿四的距離大約是640光年,平均的絕對星等是-6.05。 而事实上,有关参宿四的质量始终有争议,有的资料显示它的质量不过太阳的14至15倍,但也有的资料认为它的质量达到太阳的18至19倍甚至20倍的,而这种质量的不确定性,正是由于测量距离的不确定性造成的。 在1920年,参宿四是第一顆被測出角直徑的恆星(除太陽之外)。從此以後,研究人員不斷使用不同的技術參數和望遠鏡測量這顆巨星的大小,而且經常產生衝突的結果。目前估計這顆恆星的視直徑在0.043~0.056角秒,作為一個移動的目標,参宿四似乎周期性的改變它的形狀。由於周邊昏暗、光度變化(變星脈動理論)、和角直徑隨著波長改變,這顆恆星仍然充滿了令人費解的謎。参宿四有一些複雜的、不對稱的包層,引起巨大的質量流失,涉及從表面向外排出的龐大冠羽狀氣體,使事情變得更為複雜。甚至有證據指出在它的氣體包層內有伴星環繞著,可能加劇了這顆恆星古怪的行為。 天文學家認為参宿四的年齡只有1,000萬年,但是因為質量大而演化得很快。它被認為是來自獵戶座OB1星協的奔逃星,還包含在獵戶腰帶的参宿一、参宿二、和参宿三等0和B型晚期恆星的集團。以現行恆星演化的晚期階段,預料参宿四在未來的數百萬年將爆炸成為II型超新星,並變成一顆中子星。.

新!!: 天球和參宿四 · 查看更多 »

參考平面

參考平面是天體力學中用來定義軌道要素的平面(位置)。軌道傾角和升交點黃經是相對於參考平面的兩個主要軌道要素。 依據描述不同類型的天體,通常有四種不同的參考平面會被使用:.

新!!: 天球和參考平面 · 查看更多 »

合 (天體位置)

合(conjunction,亦稱合日)是位置天文學的一個名詞,它的意義是從一個選定的特定天體(通常是地球)觀察到二個天體在天空上的位置彼此非常靠近。較嚴謹的說法是這兩個天體在天球上有相同的赤經或黃經,而通常對太陽系內的天體都會使用黃經。這種現象有時稱為appulse:兩星漸近(台灣用法)或最小角距(中國大陸用法)。 在天文學上的符號是☌(在Unicode編碼為x260c),手寫是:.

新!!: 天球和合 (天體位置) · 查看更多 »

夏季大三角

夏季大三角星際圖 夏季大三角(又名:夏秋大三角)是在天球上想像出來的三角形,由天琴座的織女星、天鷹座的牛郎星及天鵝座的天津四組成,其中织女星位于这个三角形的直角顶点上。這三顆星分别是它们所在星座中最明亮的星。.

新!!: 天球和夏季大三角 · 查看更多 »

大犬座

大犬座(Canis Major)是一个位于天球南部的星座,是现代88个星座和托勒密定义的48个星座之一。它在拉丁文中的名字是大犬(great dog),与之对应的是小犬(lesser dog),分别指大犬座和小犬座。此外,银河经过了大犬座区域,其边界内有好几个疏散星团,最著名的是M41。 大犬座内有天狼星,由于其距离太阳系较近(8.6光年),并且自身也具有一定亮度(绝对星等1.42),因此是地球上夜空中最亮的恒星。相比之下,该星座内其他较亮的恒星则是距离较远的高亮度恒星。 视星等为1.5的弧矢七(大犬座ε)是大犬座内第二亮的恒星,也是夜空中最强的极紫外辐射来源。 接下来较亮的是视星等为1.8的黄-白F型超巨星弧矢一(大犬座δ),视星等为2.0的蓝-白巨星军市一(大犬座β),视星等为2.4的蓝白超巨星弧矢二(大犬座η),视星等为3.0的白色光谱联星孙增一(大犬座ζ)。 该星座内还有红色特超巨星大犬座VY,是已知的最大的恒星之一,而同样位于该星座内的中子星 半径仅为5公里。.

新!!: 天球和大犬座 · 查看更多 »

大犬座ο²

大犬座Omicron2(大犬座ο²,ο² CMa)是一个位于大犬座的恒星。自从1943年,这个恒星的光谱被当作分类其它恒星的基准之一。视星等2.93,使他成为这个星座的最亮星之一。这个恒星的距离大约是2800光年,误差范围34%。 这是一个大质量的超巨星,恒星分类B3Ia,年龄7百万年,已经耗尽核心的氢,现在正在由氦聚变产生能量。它有大约34倍太阳质量,56倍太阳半径。该星会以II型超新星结束生命。 大犬座Omicron2是已知最亮恒星之一,它辐射出超过170,000倍太阳光度。这个恒星的表面温度为15,500K,使他成为一个发出蓝白色光的B型星。该星被分类为天鹅座α型变星,有着周期性的非径向胀缩,造成它的亮度以24.44天的周期在2.93和3.08等之间变化。它正在以每年太阳质量的速度经由恒星风流失质量,相当于5亿年流失1太阳质量。 虽然该星在疏散星团Collinder 121的视野上,但是它不可能是成员。事实上,它在地球上看起来很近的邻居大犬座ο1,根据自行运动有23%的可能是这个星团的成员。虽然它们在天球上看起来很近,大犬座ο1和大犬座ο2几乎不可能是被引力束缚的,他们相距数百光年。 在中国星官系统中,大犬座Omicron2被称为军市增五。 Category:大犬座 44022 2282 196698.

新!!: 天球和大犬座ο² · 查看更多 »

天宫图

1980年1月1日凌晨12:01中国北京的天宫图。 天宫图(Horoscope)特指占星学里面用图像表示的日、月、行星以及黃道十二宮和中天的位置。这个位置一般是以地球上特定一点(例如在生辰天宫图中为出生地)为参考坐标。虽然也有少数占星家使用日心体系,下列的阐述均用地心坐标。 天宫图上表达的客观信息,除了宫位的划分之外一般与天文学计算相吻合。其阐述解释则属于占星学的范围。.

新!!: 天球和天宫图 · 查看更多 »

天体测量学

天体测量学或測天學(Astrometry)是天文学中最古老也是最基礎的一個分支,主要以測量恆星的位置和其他會運動天體的距離和動態。他是傳統科學中的一個子科目,後來發展出以定性研究為主體的位置天文學。天文測量學的歷史,在西方可以追溯到依巴谷(Hipparchus),他編輯了第一本的星表,列出了肉眼可見的恆星並發明了到今天仍沿用的視星等的尺標。現代的天體測量學建立在白塞耳的基本星表上,這是以布拉德雷在西元1750至1762年間的測量為基礎,提供了3,222顆恆星的平均位置。 除了提供天文學家基本的參考座標系作為她們在天文觀測報告之用外,天文測量學也是天體力學、恆星動力學和星系天文學等學門的基礎。在觀測天文學中,天文測量的技術協助鑑別出各種天體獨特的運動。他的設備也用於守時(keeping time),因為協調世界時(UTC)是在確切觀測地球自轉的基礎上,以閏秒的調整與原子時間取得協調與一致。天文測量學也與極端複雜的宇宙距離尺度有所關聯,因為他用於建立視差以估計銀河系內恆星的距離。.

新!!: 天球和天体测量学 · 查看更多 »

天倉五

天倉五,又稱為鯨魚座τ星(Tau Ceti,τ Cet/τ Ceti,),是在鯨魚座內一顆在質量和恆星分類上都和太陽相似的恆星,與太陽系的距離正好少於12光年,相對來說是一顆接近的恆星。天倉五是顆金屬含量稀少的恆星,人們推測它擁有類地行星(岩石行星)的可能性較低。根據觀測結果,它周圍的塵埃10倍於太陽系周圍的。這顆恆星看似穩定,只有少量的恆星變異。 通過天體位置和徑向速度的測量並未發現天倉五有伴星,但是這只排除大如次恆星,如同棕矮星的伴星。2012年12月偵測到了天倉五周圍可能有5顆行星存在的證據,其中一顆行星可能位於天倉五的適居帶。因為有岩屑盤,任何環繞著天倉五的行星都將比地球面對更多的撞擊事件。儘管這些事情導致行星不適宜居住,但普遍來說它擁有類似太陽的特性仍然在群星中引起大眾對它的興趣。它是搜尋地外文明計劃(SETI)搜尋的目標名單上的常客,因為它的穩定性和與太陽類似,而且它出現在一些科幻小說的作品中。 天倉五不像其他著名的恆星,有廣為人知的固有名稱,它只是肉眼可以直接看見視星等為3等的暗星。從天倉五看太陽,也只是在牧夫座內的一顆3等星。.

新!!: 天球和天倉五 · 查看更多 »

天琴座

天琴座是北天银河中最灿烂的星座之一,因形状犹如古希腊的竖琴而命名。它是古希腊天文學家托勒密列出的48个星座之一,也是国际天文学联合会所定的88個現代星座之一。雖然天琴座面積不大,但並不難辨認,因為它的主星织女星是“夏季大三角”的頂点之一。 由北面开始順時針方向,天琴座被天龙座、武仙座(海格力斯)、狐狸座及天鹅座所包圍。中心位置:赤經18時50分,赤緯36°。座內目視星等亮於6等的星有53顆,其中亮於4等的星有8顆。.

新!!: 天球和天琴座 · 查看更多 »

天球坐标系统

天球坐標系統,是天文學上用來描繪天體在天球上位置的坐標系統。有許多不同的坐標系統都使用球面坐標投影在天球上,類似於使用在地球表面的地理坐標系統。這些坐標系統的不同處只在用來將天空分割成兩個相等半球的大圓,也就是基面的不同。例如,地理坐標系統的基面是地球的赤道。每個坐標系統的命名都是依據其所選擇的基面。.

新!!: 天球和天球坐标系统 · 查看更多 »

天球赤道

天球赤道是在天球上的一個大圓,它與地球的赤道是同一個平面。換言之,天球赤道是地球赤道在天球上的投影。相同的結果是地球的軌道傾角,使天球的赤道相對於黃道平面傾斜約23.5°。 在地球赤道上的一位觀測者,看到的天球赤道是通過天頂的一個半圓,而當觀測者向北(南)移動,天球赤道就會向南(北)方地平傾斜。天球赤道的距離被定義為無窮遠(因為它位於天球上),因此觀測者看見天球赤道半圓的末端,相對於觀測者,永遠都在地平的正東方與正西方(只有在地理極點的觀測者,看見的天球赤道是平行於地平線)。在所有的緯度上,觀測者看見的天球赤道看起來都是一條理想的直線,因為觀測者與地球赤道的距離都是有限的,但是天球赤道的距離是無窮遠的。 在地面上如何确定天赤道:举一手与北极星成一直线,举另一手与之成直角,所指即在天赤道上。(原理:因为北极星离地球400光年,地球半径与之相比长度几乎可以忽略。因此,北极星的高度(角度)应该就约等于(北半球)观测者所处的纬度;按上述方法举起“另一手” 所形成的线就大致平行于赤道;又因为天球是无穷大的,观察者与地球赤道之间的距离就可以忽略不计,因而该手所指,就无限接近于天赤道。 或者更简单地解释:北极星离地球极远,因此,观察者与北极的连线就无限接近于北极星与地心的连线;与该线垂直的线就应平行于赤道;而又因为天球是无穷大的,观察者与地球赤道之间的距离就可以忽略不计,因而该手所指,就无限接近于天赤道。) 位於天球赤道上的天體在全球各地都能看見,但是只有在中天時到達最高點,而只有在熱帶才能真正的在天球的最高處看見。天球赤道經過的星座共有15個,名稱如下:.

新!!: 天球和天球赤道 · 查看更多 »

天箭座

天箭座(拉丁文:Sagitta),面积79.93平方度,占全天面积的0.194%,在全天88个星座中,面积排行倒数第三(只有小馬座和南十字座比它更小)。天箭座中亮于5.5等的恒星有8颗,最亮星为左旗五(天箭座γ),视星等为3.47。每年7月16日子夜天箭座中心经过上中天。.

新!!: 天球和天箭座 · 查看更多 »

天蝎座

天蝎座(Scorpius,天文符号:♏),是一个位于南天球的黄道带星座之一,面积496.78平方度,占全天面积的1.204%,在全天88个星座中,面积排行第三十三。每年6月3日子夜天蝎座中心经过上中天。天蝎座中亮于5.5等的恒星有62颗,最亮星为心宿二(天蝎座α),视星等为0.96,是全天第十五亮星。.

新!!: 天球和天蝎座 · 查看更多 »

天體命名

天體命名就是為天文觀測所見到或發現的天體取名字。 在古老的時候,只有太陽、月球和數百顆恆星以及肉眼可以看見的行星有名字。但在過去的數百年,天文學上辨認出來的天體數量已經從數百顆增加至數十億顆,而且每年還有更多的新天體不斷的被發現。天文學家需要一套辨識系統,能明確且不含糊的分辨出這些天體,同時對令人感興趣的天體給予特別的名字,而且這些名稱必須是有意義的,能夠呈現這些天體的特質。 國際天文學聯合會(IAU)是全球天文學家和其他的科學家認可,能為天體命名的唯一機構。為了能給予任何天體一個明確的名稱,該學會已經建立一套命名系統,能系統化的為各種不同的天體命名與排列順序。.

新!!: 天球和天體命名 · 查看更多 »

天體的極

天體的極是基於測量它們的自轉軸相對於天球的方向確定的。.

新!!: 天球和天體的極 · 查看更多 »

天鵝座X-1

天鵝座X-1(簡稱Cyg X-1)是一個银河系内位于天鵝座的双星系统,是著名的X射線源。它在1964年的一次火箭彈道飛行時被發現,是從地球觀測最強的X射綫源之一,其頂峰X射綫通量為2.3 Wm−2Hz−1。天鵝座X-1是最先被廣泛承認為黑洞的候選星體,也是同類星體中最受研究關注的。現在估計其質量為太陽質量的8.7倍,而其密度之高使黑洞成爲唯一一種解釋。如果如此,它的事件視界半徑約為26公里。 天鵝座X-1屬於一個高質量X射線雙星系統,其距離太陽大約6,070光年,另一成員為一顆超巨星變星,編號為HDE 226868。兩者相互圍繞公轉,距離為0.2天文單位,即地球和太陽間距離的20%。該星的星風為X射綫源的吸積盤提供物質。盤的内部溫度達到幾百萬K,因此輻射出X射綫。兩條垂直于吸積盤的相對論性噴流將被吸進的物質噴射出星際空間。 這個系統可能屬於一個名為天鵝座OB3的星協,意味著天鵝座X-1的年齡超過500萬年,並源于一顆質量大於40個太陽質量的原星。這顆原星的大部分質量都散失了,很可能是以星風的形式。如果該星以超新星的形式爆炸,則其威力足以將剩餘物質噴射出這個系統。因此它可能直接坍縮成一個黑洞。 物理學家史蒂芬·霍金和基普·索恩曾拿天鵝座X-1作了一場科學的賭局。當中霍金賭天鵝座X-1不是一顆黑洞。1990年霍金讓步,因爲觀測證據顯示這個系統中存在著引力奇點。.

新!!: 天球和天鵝座X-1 · 查看更多 »

天鉤五

天鉤五 (α Cep / 仙王座α) 是仙王座內的一顆恆星,英文的專屬名稱是Alderamin。.

新!!: 天球和天鉤五 · 查看更多 »

天極

天極是地球的自轉軸(地軸)(earth axis),向天球延伸後,在无穷远处與天球交會的兩個假想點。 夜空中的星星,看起來是從頭頂上由東向西移動,使人产生天球也在从东向西自转的感觉,这是由于人观测星空时是以地球为参考系的緣故;由于地球不是惯性系,是绕地轴持續自转,因此相對观测者而言會产生天球绕地轴自转的错觉。天球「自转」周期與地球自轉周期一樣,皆為恆星時的23小時56分04秒。 地軸延伸至无穷远处與天球相交于两点稱為天極。以地球为参考系时,观测者会观测到這兩個點是天球上唯一的一對不动的点,以此二点连线(即地轴)为基准轴,以地心为原点,以赤道平面为基准面,所建立的天球坐标系统,即是天球赤道座標系統,相应的二天极坐标的第三坐标(即赤纬)分别为分別是+90°(北天極)和-90°(南天極)。 對於天文攝影中的追蹤攝影,作為追蹤裝置的赤道儀必需先對準天極始能準確追蹤拍攝天體。.

新!!: 天球和天極 · 查看更多 »

天樞

天樞(α UMa、大熊座α)是大熊座第2亮的恆星,也是北斗七星之一。天樞是一個多重星系統,由3顆恆星所構成。《佛說北斗七星延命經》稱之為「貪狼」,原文如下:「南無貪狼星。是東方最勝世界運意通證如來佛。」《北斗治法武威经》云:「第一天枢,名魁,字贪狼。.

新!!: 天球和天樞 · 查看更多 »

天文学史

天文学的历史非常久远,天文学可谓人类历史上古老的一门科学。从最初人类对于星象变化的认识开始,天文学就已经开始萌芽了。人们为了研究和制定各种时间或时令(例如:季节或者历法)而产生了天文学,甚至有一部分是来源于占卜的——许多人以星象来进行占卜,即占星术。 可以说,天文学发展了那么长的时间,研究它的历史,也是非常有意义的。这也是天文学研究中的一个重要方向。尤其是历史上记录的各种天文现象,更是当今某些天文研究领域的非常重要、非常珍贵的资料。正是由于一直以来不断的资料积累,才使得后来的天文学有了相当大的发展。因此天文学史也就成了天文学的一个重要分支。 早期的天文學致力於發展在天球上可見的明亮天體的運行規律,特別是太陽、月球、恆星和肉眼可見行星。早期天文學研究的一個例子是太陽在地平線上的出沒在恆星中位置的週年變化,這可以用來建立農業的儀式或日曆。在某些文化中,天文的資料被用於占星學中的預測。 古代的天文學家已經能夠區分恆星和行星,在比較下,恆星經歷世紀的長時間依然是固定不變的,但行星在很短的時間就會移動位置。.

新!!: 天球和天文学史 · 查看更多 »

天文學辭彙

天文學辭彙是天文學上的一些術語。這項科學研究與關注的是在地球大氣層之外的天體和現象。天文學的領域有豐富的辭彙和大量的專業術語。.

新!!: 天球和天文學辭彙 · 查看更多 »

天文定位

天文定位(Celestial Positioning)指利用觀測時間從天文曆查詢天體坐標位置,以六分儀觀測星體高度,可得地球上觀測位置線。.

新!!: 天球和天文定位 · 查看更多 »

太陽位置

太陽位置是從地球表面觀察時,太陽在天空中的位置,它是時間和地理位置兩者的函數。當地球繞著太陽運轉一年,太陽似乎相對於在天球上的恆星沿著一條固定的路徑移動,這個路徑稱為黃道。地球自轉導致天空中恆星的運動是相對於觀測者的地理緯度,沿著一定的路徑與方式移動,特定的恆星穿越觀測者的子午線的時間與當地的經度有所關聯。讓一位觀測者找到再給定時間的太陽位置,要經過下列三個步驟 :.

新!!: 天球和太陽位置 · 查看更多 »

太陽系探測器列表

本列表包括任務成功以及試圖到達地球以外的所有探測器,其中的目標任務包括小行星、行星、衛星、太陽甚至是太陽系外的探測。其中有一些任務僅飛掠小行星、行星、衛星、太陽,由於探測地球本身的探測器數量龐雜、利用多次重力拋射的探測器軌道複雜,所以未加觀測地球、飛掠地球的探測器並未列入。另外,本列表目前也未將已取消或是未來可能發射的探測器列入,因為可能有諸多不確定因素。 截至2016年4月為止,共有248艘探測器被設定為太陽系探測器,這些探測器有些攜帶許多小探測器,但大部分為單一的探測器,其中143艘探測器成功;7艘探測器部分成功;98艘探測器失敗。.

新!!: 天球和太陽系探測器列表 · 查看更多 »

夜空

夜空通常是用來形容在夜晚看見的天空的一個專用術語。這個名詞常與天文學中的天體,像是恆星、月球和行星,這些在日沒之後就能在夜晚晴朗的天空中看見的天體聯結在一起。 夜空和對它的研究,從古至今都是歷史和文化的一部分。在過去,例如,農民就以夜空的狀態當日曆,來決定植物種植的時間。許多文化也將天空中的星座和亮星圖繪與神、神話和傳說等聯結在一起。 占星術在古代的發展相信通常是基於天體對地球上事物的影響和所傳遞的訊息。對夜空和天體的科學性研究和觀察,同時也使天文學成為一門科學。 夜空中天體的可見性受到光汙染的影響。在歷史上,夜空中的月球會增加環境的照明而妨礙天文觀測。然而,隨著人工光源增加所造成的光汙染,已使得觀察天空的問題日趨嚴重。特殊的濾色片和對燈具的改善有助於舒緩這方面的問題,但是無論對專業或業餘的光學天文學家,最好的觀測地點還是位於遠離城市的地區。.

新!!: 天球和夜空 · 查看更多 »

子午圈

天文學的觀念| 子午圈是在天空中假想的天球上,穿過天頂和在地平圈上北點的一個大圓。他在地平圈上經過過天球北極、通過天頂,再經過地平圈上的南極,然後通過天底,他還會垂直當地的地平圈。因為子午圈固定於當地的地平圈,當地球自轉時,恆星將會依序經過這個子午圈,我們可以使用天體的赤經和當地的恆星時來計算該天體何時會經過該子午圈,或是中天(參見恆星時)。 上子午圈是子午圈在地平圈上的一半,下子午圈是在地平圈下的另一半。通俗的說法是在天上從南→天頂→北順序通過的一個假想大弧,亦稱(天球子午圈),而在地平線下通過天底,看不見的另一半大圓則稱下子午圈。因為觀測者所在地固定的話,地平經圈與天極也是相對固定的;夜空出現之星座以至恆星便會因為地球的自轉依序東升、經過子午線然後西落。 因為星座與天體在周日運動中,若經過上子午圈之時(即上中天),地平方位角最高,天體經過的大氣厚度最少,抖動與消光也相對最少,因而也是最容易觀測的時候;在普通天文觀測上,觀星者可以活動星圖來推測某星座或某目標天體的最佳觀賞時間。我們亦可以利用恆星的赤經來定義地方恆星時,並且精確測量或計算天體將於何時經過子午圈。.

新!!: 天球和子午圈 · 查看更多 »

定位圈

定位圈是設置在望遠鏡的赤道儀式架台上的裝置,這是與星圖或星曆表上常用的赤道座標一樣的天球座標系統,可以協助尋找在天空中的目標天體。.

新!!: 天球和定位圈 · 查看更多 »

宣夜說

宣夜說是中國古代的宇宙論,認為宇宙有無限廣度的空間。 宣夜說受道家思想影響,起源可追溯到《莊子·逍遙遊》,由東漢秘書郎郄萌提出,今見載於《晉書·天文志》和《隋書·天文志》,設想宇宙是無限的,天體飄浮在虛空之中,互相遠離,受「氣」的推動而運行,進退不一。此說不認為天有某種形狀,沒有「天球」的想法。從天文觀測的觀點出發,宣夜說並不優於渾天說。 在西方,相似的宇宙無限的說法,首見於古希臘哲學家德谟克利特。.

新!!: 天球和宣夜說 · 查看更多 »

室女座星流

室女座星流(也稱為室女座高密度區、室女座矮星系或室女座超星團)是一個位在室女座的星流,在2005年才被發現,被認為是與銀河系合併過程中殘留的矮橢球星系殘骸。從地球上觀察,他是夜空中遮蓋區域最大的星系。 這個星流是從史隆數位巡天的光度測量資料中發現的。這是用來創建銀河系在三度空間中圖像的資料,是利用恆星類型中顏色和絕對星等已經確定的特徵估計它們的距離(所謂的「光度視差法」)。最早認為在室女座有一個新星系的是類星體赤道巡天小組 (Quasar Equatorial Survey Team.),使用位於委內瑞拉口徑1.0 米的施密特攝星儀觀察天琴座RR變星時,發現5顆這一類型的變星聚集在大約赤經12.4 h之處,因而天文學家推測該處是一個小星系被銀河系吞噬之後的殘留部份。 這股細流在天空中至少覆蓋了100平方度,並有可能達到1,000平方度(大約是無論任何時間天球可見部份的5%,或是滿月面積的5,000倍)。儘管他鄰近太陽系使立體角必然涵蓋較大的區域,但也只擁有數十萬顆的恆星。這個星系偏低的表面亮度(可能只有32.5M/角秒 ²),使得在之前的巡天觀測都未能發現他。 在這個星流中的恆星數量比一個星團的規模大不了多少,因此當初的發現團隊稱這個星流是"真正令人感傷的星系",其中許多的恆星雖然金屬量比第一族星為低,但在過去數個世紀都被認為是銀河系內正常的恆星。 這個星流位於銀河系內,距離太陽大約10,000秒差距(30,000光年),並且在三度空間的天空中至少跨越10,000秒差距,接近於1994年以類似的光度分析方法,發現的人馬座矮橢圓星系在天空中的平面。人馬座矮星系是另一個與銀河系合併中的小星系,但他的距離只是這個星流的4倍,因此兩者之間不太可能毫無物理上的關聯。室女座星流很可能是人馬座矮星系被切斷了聯繫的部份,循著自己的軌道繞著銀河系。室女座星流也類似2002年發現的麒麟座環,此乃由於大犬座矮星系與銀河系合併所致。.

新!!: 天球和室女座星流 · 查看更多 »

宇宙学

宇宙學(英文:Cosmology)或宇宙論,這個詞源自於希臘文的κοσμολογία(cosmologia, κόσμος (cosmos) order + λογια (logia) discourse)。宇宙學是對宇宙整體的研究,並且延伸探討至人類在宇宙中的地位。雖然宇宙學這個詞是最近才有的,人們對宇宙的研究已經有很長的一段歷史,牽涉到科學、哲學、神秘学以及宗教。.

新!!: 天球和宇宙学 · 查看更多 »

宇宙雜訊

宇宙雜訊和星系電波雜訊是來自地球大氣層外的隨機雜訊,它可以從無線電接收器聽到和檢測。.

新!!: 天球和宇宙雜訊 · 查看更多 »

安提基特拉机械

安提基特拉機械(希臘文:O μηχανισμός των Αντικυθήρων, O mēchanismós tōn Antikythērōn,或譯為安提基瑟拉、安提基西拉)是古希腊时期為了計算天體在天空中的位置而設計的青銅機器,屬於模拟计算机 Quote: Imagine tossing a top-notch laptop into the sea, leaving scientists from a foreign culture to scratch their heads over its corroded remains centuries later.

新!!: 天球和安提基特拉机械 · 查看更多 »

尺 (天文)

尺是中国古代的天文测量中目视测天的计量单位,1尺.

新!!: 天球和尺 (天文) · 查看更多 »

尼古拉·哥白尼

尼古拉·哥白尼(Nicolaus Copernicus,Mikołaj Kopernik,)是文艺复兴时期波兰数学家、天文学家,他提倡日心说模型,提到太陽為宇宙的中心。1543年哥白尼临终前发表了《天體運行論》一般認為他著的是現代天文學的起步點。它开启了哥白尼革命,并对推动科学革命作出了重要贡献。 哥白尼出生于皇家普魯士,该地区自1466年隶属于波兰王国。哥白尼获得了教会法规博士学位,同时也是一名医生,通晓多国语言,了解经典文学,能够胜任翻译,做过执政官、外交官,也是一名经济学家(后续几项都没有学历学位)。1517年,哥白尼总结了货币量化理论,成为当今经济学的重要基础之一。1519年,哥白尼在托马斯·格雷沙姆之前总结出了劣幣驅逐良幣理论的前身。.

新!!: 天球和尼古拉·哥白尼 · 查看更多 »

岩居由希子

岩居由希子()是日本的女性演員、聲優,千葉縣八千代市出身,所屬賢Production。舊藝名是岩井由希子(日语讀音與现名相同)。 代表作有《名偵探柯南》(吉田步美)、《月東日西》(仁科恭子)、《星球流浪記》(露娜)等等。。.

新!!: 天球和岩居由希子 · 查看更多 »

巡天調查

巡天調查是針對天空中或其中一個區域,以某種欠缺資料的特定天體為目標進行的搜尋工作。或者,巡天調查可能會由一組共享或共用常見類型或特徵的許多圖像或光譜組成的物件。雖然可以經由始用多個探測器,為不同的頻寬和敏感的波段作多種波長的調查,但由於儀器的限制,巡天往往限於某些特定的電磁波頻譜或波段。巡天調查的一部分成果往往是產生一份天體目錄。.

新!!: 天球和巡天調查 · 查看更多 »

中國發明

中国是世界上部分重要发明的发源地,包括古代中国四大发明:造纸、指南针、火药、印刷(包括雕版印刷与活字印刷)。下表包括四大发明以及其他最早出现在中国的发明。中国人独创的发明涉及机械学、水力学、数学,这些学问应用在计时、冶金、天文、农业、工程、乐理、工艺、导航、以及军事上。时至战国时期(前403年至前221年),中国已拥有先进的冶金技术,包括高炉和熔铁炉,而工匠至汉朝(前202年至220年)才掌握百炼钢与铣铁重熔的技巧。后来在宋朝(960年至1279年),复杂经济制度的崛起促使了如纸币的发明。中国人至少在10世纪之前发明的火药引发了一系列独一无二的发明的诞生,如火枪、地雷、水雷、手铳、爆炸炮弹、多节火箭、以及带气动翼及爆炸酬载物的火箭弹。中国古航海家靠著十一世纪发明的指南针及一世纪发明的尾舵等的帮助,让船隻得以穿越远洋到达非洲东部和埃及。至于水力钟表机构,古代中国人自8世纪起已使用擒纵机械,而自11世纪起使用环状传动链条。中国亦建造了由水车舵轮驱动的大型木偶剧院,以及由明轮所驱动的侍酒机器人。 于约前7000年形成的裴李岗文化及彭头山文化代表了最古老的中国新石器时代文化Bellwood (2006), 106.

新!!: 天球和中國發明 · 查看更多 »

中西星名對照表

中西星名對照表將中國星名對應到現代星名,並列出所有星區、星官以及星名的中西譯名,分為32天區,有306星官,共1511星。由於星數眾多,按北天、南天、東方、北方、西方、南方共六個星區分別列表,又獨立出二十八宿部分以方便瀏覽。.

新!!: 天球和中西星名對照表 · 查看更多 »

平方度

平方度是一個量度立體角的非國際單位制單位。這個單位是從對平面角的度量推廣得到的。對應於切分圓為360份所得到的單位度,將一個球面切分為129600\over\pi份,每一份即為一平方度。這個數值大約為41252.96。 推導方法如下: 圓形的周界: \begin S &.

新!!: 天球和平方度 · 查看更多 »

年,或稱地球年、太陽年,是與地球在軌道上繞太陽公轉有關事件再現之間的時間單位。將之擴展,可以適用於任何一顆行星:例如,一「火星年」是火星自己完整的運行繞太陽軌道一圈的時間。 一般而言,一年之長度取為太陽在天球上沿黄道從某一定標點再回到同一定標點所經歷的時間間隔。由於所選取之定標點不同,年之定義有:.

新!!: 天球和年 · 查看更多 »

亚里士多德

亞里士多德(Αριστοτέλης,Aristotélēs,),古希腊哲学家,柏拉圖的學生、亚历山大大帝的老師。他的著作包含許多學科,包括了物理學、形而上學、詩歌(包括戲劇)、音乐、生物學、經濟學、動物學、邏輯學、政治、政府、以及倫理學。和柏拉圖、蘇格拉底(柏拉圖的老師)一起被譽為西方哲學的奠基者。亞里士多德的著作是西方哲學的第一個廣泛系統,包含道德、美學、邏輯和科學、政治和形而上学。 亞里士多德关于物理學的思想深刻地塑造了中世紀的學術思想,其影響力延伸到了文藝復興時期,雖然最終被牛頓物理學取代。在動物科學方面,他的一些意見仅在19世纪被确信是準確的。他的学术领域还包括早期关于形式逻辑理论的研究,最终这些研究在19世纪被合并到了现代形式逻辑理论裡。在形而上學方面,亞里士多德的哲學和神學思想在伊斯蘭教和猶太教的傳統上產生了深遠影響,在中世紀,它繼續影響着基督教神學,尤其是天主教教會的學術傳統。他的倫理學,虽然自始至终都具有深刻的影响,后来也随着新兴現代美德倫理的到来获得了新生。今天亞里士多德的哲學仍然活躍在學術研究的各个方面。在經濟學方面,亞里士多德對於經濟活動的分類與看法持續影響到中世紀與重農主義,直到被亞當斯密的古典經濟學派取代為止。雖然亞里士多德寫了許多論文和優雅的對話(西塞羅描述他的文學風格為“金河”),但是大多數人認為他的著作现已失散,只有大約三分之一的原创作品保存了下來。.

新!!: 天球和亚里士多德 · 查看更多 »

人马座

人马座(Sagittarius,天文符号:♐),又稱射手座,是一个南天黄道带星座,面积867.43平方度,占全天面积的2.103%,在全天88个星座中,面积排行第十五。人马座中亮于5.5等的恒星有65颗,最亮星为箕宿三(人马座ε),视星等为1.85。每年7月7日子夜人马座中心经过上中天。.

新!!: 天球和人马座 · 查看更多 »

五車二

五車二 (御夫座α)是御夫座最亮的恆星,也是全天第六亮星,在北半球僅次於大角星和織女星,是北天第三亮星。它的英文名稱源自拉丁文,原意是小山羊。拜耳命名法指定它是α星,縮寫為α Aurigae、α Aur或Alpha Aur。雖然以裸眼看它似乎只是一顆恆星,但它實際上是一個恆星系統,是由4顆恆星組成的兩對聯星。第一對的兩顆暨大且亮,是G-型巨星,每顆的直徑都是太陽的10倍,質量是太陽質量的2.5倍,在很靠近的軌道上互繞著。這兩顆星各自的名稱是五車二Aa和五車二Ab,未來也都會逐漸冷卻和膨脹,演化成為紅巨星。第二對,與第一對相距大約10,000天文單位,且兩顆都是黯淡、低質量、和相對較低溫的紅矮星。它們的名稱分別是五車二H和五車二L,而從C到G和I到K,則是在同一個視野中,但其實毫無關連性的其它恆星Capella HL, T. R. Ayres, pp.

新!!: 天球和五車二 · 查看更多 »

事件視界望遠鏡

事件視界望遠鏡(Event Horizon Telescope, EHT)是一個以觀測星系中央超大質量黑洞為主要目標的計畫。該計劃以甚長基線干涉技術(VLBI)結合世界各地的電波望遠鏡,使許多相隔數十萬公里的獨立天線能互相協調、同時觀測同一目標並記錄下數據,形成一口徑等效於地球直徑的虛擬望遠鏡,將望遠鏡的角解析力提升至足以觀測事件視界尺度結構的程度。EHT期望藉此檢驗愛因斯坦廣義相對論在黑洞附近的強重力場下是否會產生偏差、研究黑洞的吸積盤及噴流、探討事件視界存在與否,並發展基本黑洞物理學。 EHT的觀測目標主要為位於南半天球、銀河系中央的超大質量黑洞人馬座A*以及位於北天球的橢圓星系M87星系中央的超大質量黑洞。其中人馬座A*在地球天空中佔的盤面較大,而M87的黑洞則以擁有一道長達5,000光年的噴流為著名特色。為了看透銀河盤面及圍繞在黑洞周圍的物質,EHT將觀測波長設定於1.33毫米,並預計於未來提升至能更精細觀測的0.87毫米。由於連線觀測產生的數據量將大到無法使用網際網路傳輸,各觀測台會於觀測後將儲滿數據的硬碟郵寄至美國馬薩諸塞州的海斯塔克天文台,交由超級電腦運算,並合成單一影像。根據電腦模擬,環繞黑洞的物質發出的光將被黑洞自身質量產生的重力透鏡效應彎曲,在黑洞周圍形成一光環,而光環中央襯托出的圓形剪影便是黑洞的輪廓,也就是事件視界。 2012年,天文學家於美國亞利桑那州首次正式舉辦EHT會議,確立計畫的科學目標、技術計畫和組織架構等。觀測則始於更早的2006年,當時已有三座望遠鏡使用VLBI技術進行連線觀測。多年下來,EHT逐漸從一個鬆散、資金不足的團隊,成長為30多所來自12個國家的大學、天文觀測站等研究單位與政府機構參與的國際合作組織。EHT於2017年4月首次進行為期十天的全球連線觀測,觀測目標為人馬座A*。此次觀測也第一次納入位於智利的阿塔卡瑪大型毫米及次毫米波陣列(ALMA)、南極點的南極望遠鏡等成員。其中ALMA為一關鍵成員,它的加入將EHT的靈敏度提高了十倍。天文學家希望於此次觀測中攝得第一張黑洞剪影的影像。觀測結果預計於2017年底至2018年公布。.

新!!: 天球和事件視界望遠鏡 · 查看更多 »

仰儀

仰儀 又稱仰釜,是由元朝天文學家郭守敬所發明的天文儀器,作用為測量天體球面之座標。仰儀的外型有如一口仰著朝天的大碗,因此又稱為仰釜。.

新!!: 天球和仰儀 · 查看更多 »

仙后座

仙后座,北天星座,北半球一整年都可以看到它,不过最佳观测季节是秋季(10月-11月)。它代表著埃塞俄比亞皇后卡西歐佩亞(Cassiopeia)。仙后座是國際天文學聯合會88個現代星座之一,也是古希臘天文學家托勒密列出的48個星座其中之一。 仙后座是一個易認的星座,其五顆最亮星組成一個非常獨特的W形或M形(随观看季节有关)。由於它與北極星距離並不遠,在高緯度地區這星座整晚都不會落下,而且跟北斗七星相對,是拱極星座也是指極星座之一。.

新!!: 天球和仙后座 · 查看更多 »

伊本·魯世德

阿布·瓦利德·穆罕默德·伊本·阿马德·伊本·鲁世德(,),又译为阿威罗伊、亞維侯,是著名的安达卢斯哲学家和博学家,研究古希腊哲学、伊斯兰哲学、伊斯兰教法学、医学、心理学、政治学、音乐、地理、数学、天文和物理学。 伊本·鲁世德支持亚里士多德的哲学,反对安萨里的神学理论,认为一切现象都遵从神创造的自然规律,而不是因神的意愿而发生。他对西方哲学有重要的影响,被称作“西欧世俗思想之父”。 他对亚里士多德思想和著作的传播起了重要的作用。.

新!!: 天球和伊本·魯世德 · 查看更多 »

伊斯蘭黃金時代

伊斯蘭黃金時代(阿拉伯語:حضارة إسلامية)又稱伊斯蘭復興,其时间跨度在習慣上是指公元762年—13世紀之間的500年,近來的一些學術研究將之延展至15世紀。在這段時期,伊斯蘭世界的藝術家、工程師、學者、詩人、哲學家、地理學家及商人輩出,在傳統學術的基礎上保留並促進了藝術、農業、經濟、工業、法律、文學、航海、哲學、科學、社會學、科技各方面的發展,並在基礎之上對這些方面實施改革創新Science in medieval Islam: an illustrated introduction,第270頁。作家-zh-tw:霍華·透納;zh-cn:霍华德·特纳;zh-hk:侯活·特納;-寫道:「穆斯林藝術家、科學家、傑出人物及工人合力創造了一種獨一無二的文化,直接及間接地影響到各個大陸上的社會。.

新!!: 天球和伊斯蘭黃金時代 · 查看更多 »

张衡

張衡(),字平子,南陽西鄂人,東漢士大夫、天文學家、地理學家、數學家、科學家、發明家及文學家,官至太史令、侍中、尚書。張衡一生成就不凡,曾製作以水力推動的渾天儀、發明能夠探測震源方向的地動儀和指南車、發現月蝕的原因、繪製記錄2,500顆星體的星圖、計算圓周率準確至小數點後一個位、解釋和確立渾天說的宇宙論;在文學方面,他創作了《二京賦》及《歸田賦》等辭賦名篇,拓展了漢賦的文體與題材,被列為「漢賦四大家」之一。他開創了七言古詩的詩歌體裁,對中華文化有巨大貢獻。張衡為備受尊崇的偉大科學家,成就與西方同時期的托勒密媲美。此外,他的地位也被現代天文學界所肯定。.

新!!: 天球和张衡 · 查看更多 »

众友仙人

众友仙人(天城体:विश्वामित्र,IAST:Viśvāmitra),是印度神话中最伟大的仙人之一。他出身于刹帝利,最后靠苦行修为变成了梵仙(意即婆罗门仙人)。.

新!!: 天球和众友仙人 · 查看更多 »

位置角

位置角是指过天球上一点的任意大圆与过该点的参考大圆所交的球面角,通常以英文縮寫表示為PA,是觀測聯星延伸出來的測量。它被定義為伴星相較於天球北極相對於中心恆星的偏移角度。 如圖例所示,如果某人觀測到一對假設的聯星位置角是135度,這意味著,在目鏡中畫一條從主星(P)到天球北極(NCP)的假想線,與伴星(S)偏離的角度NCP-P-S將會是135度。 當繪製聯星的軌道圖時,傳統上都將NCP線朝下繪製-就是北邊在下方-而位置角的測量是逆時針的,以0度至359度來度量。 同樣的,自行角(參見自行)有時也稱為位置角。 位置角的定義亦擴張適用至像是星系等,泛指天體的主軸與NCP線所形成的角度。.

新!!: 天球和位置角 · 查看更多 »

依巴谷星表

依巴谷星表和第谷星表(Tycho-1)是歐洲太空總署的依巴谷衛星成果的主要產物。這顆衛星在1989年11月至1993的3月的四年任務中,傳回了許多高精度的科學數據。 依巴谷星表至少列出了118,000顆天體測量學上精確度在千分之一弧秒恆星,而第谷星表 列出的則略微超過1,050,000顆恆星。 這份星表包含很大數量的高精密度天體位置和測光數據。另外伴生的附錄是變星、雙星和聚星的特性數據,和太陽系的天文測量和測光數據。主要的部分提供了可以印製和以機器閱讀的版本。 全球性的數據分析,需要處理1,000兆比特未經加工的衛星原始數據,這是一件複雜且需要漫長時間的工作,由NDAC和先進科學和技術基金會承擔,共同製做出依巴谷目錄。第四個參與合作的科學機構是INCA,負責撰寫依巴谷衛星的觀測程式和編譯成最佳化的數據選擇,在發射前就先安置在衛星的輸出目錄中。依巴谷和第谷星表的成果使歐洲太空總署等四個團體的繁雜工作得到形式上的正式結束。.

新!!: 天球和依巴谷星表 · 查看更多 »

地心说

地心说(或稱天动说),是古人認為地球是宇宙的中心,而其他的星球都環繞著它而運行的學說。 由於古代人缺乏足夠的宇宙觀測數據,以及懷著以人為本的觀念,因此他們誤認為地球就是宇宙的中心,而其他的星體都是繞著它而運行的。古希臘的托勒密(Claudius Ptolemy)將地心說的模型發展完善,且為了解釋某些行星的逆行現象(即在某些時候,從地球上看那些星體的運動軌跡,有時這些星體會往反方向行走),因此他提出了本轮的理論,即這些星體除了繞地軌道外,還會沿著一些小軌道運轉。後來,天主教教會接納此為世界觀的「正統理論」。 托勒密的理論能初步的解釋從地球上所看到的現象,但是在文藝復興時代,隨著科學技術的進步,一些支持日心說的證據逐漸出現,且有些證據無法以地心說解釋,地心說逐漸占了下風。在現代世界,支持地心說的人已經寥寥無幾。.

新!!: 天球和地心说 · 查看更多 »

地球

地球是太阳系中由內及外的第三顆行星,距离太阳约1.5亿公里。地球是人類已知宇宙中唯一存在生命的天体,也是人類居住的星球,共有74.9億人口。地球质量约为5.97×1024公斤,半径约6,371公里,密度是太阳系中最高。地球同时进行自转和公转运动,分别产生了昼夜及四季的变化更替,一太陽日自转一周,一太陽年公转一周。自转轨道面称为赤道面,公转轨道面称为黄道面,两者之间的夹角称为黄赤交角。地球仅擁有一顆自然卫星,即月球。 地球表面有71%的面积被水覆盖,称为海洋或可以成为湖或河流,其余是陆地板块組成的大洲和岛屿,表面分布河流和湖泊等水源。南极的冰盖及北极存有冰。主體包括岩石圈、地幔、熔融态金属的外地核以及固态金属的內地核。擁有由外地核產生的地磁场。外部被氣體包圍,称为大氣層,主要成分為氮、氧、氬。 地球诞生于约45.4亿年前,42億年前開始形成海洋。并在35亿年前的海洋中出现生命,之后逐步涉足地表和大气,并分化为好氧生物和厌氧生物。早期生命迹象产生的具體证据包括格陵兰岛西南部中拥有约37亿年的历史的石墨,以及澳大利亚大陆西部岩石中约41亿年前的 Early edition, published online before print.。此后除去数次生物集群灭绝事件,生物种类不断增多。根据学界测定,地球曾存在过的50亿种物种中,已经绝灭者占约99%,据统计,现今存活的物种大约有1,200至1,400万个,其中有记录证实存活的物种120万个,而余下的86%尚未被正式发现。2016年5月,有科学家认为现今地球上大概共出现过1--种物种,其中人类正式发现的仅占十万分之一。2016年7月,科学家称现存的生物共祖中共存在有355种基因。地球上有约74亿人口,分成了约200个国家和地区,藉由外交、旅游、贸易、传媒或战争相互联系。.

新!!: 天球和地球 · 查看更多 »

地球公转

地球环绕太阳的运动称为地球公转。因为同地球一起环绕太阳的还有太阳系的其他天体,太阳是它们共有的中心天体,故被称为“公”转。 地球公轉方向為逆時針,與自轉方向相同。.

新!!: 天球和地球公转 · 查看更多 »

地球自转

地球自轉是固體的地球繞著自己的軸轉動,方向是由西向東。從天球的北極點鳥瞰,地球自轉是逆時針旋轉;从南极点上空看是顺时针旋转。.

新!!: 天球和地球自转 · 查看更多 »

北天 (天球)

天球北半球或北天是在天空中旋轉的天球的一部分。它是天球的半球。 北方天空(北方的星空,北天的星)是在天赤道以北,半個天空的星斗。從北極鳥瞰可以看見全部,越南方的觀測者能看見的就越少。 在能見度良好的情況下,觀測者大約可以很自在地看見2,000顆左右的恆星,使用雙筒望遠鏡大約可以看見20,000至40,000顆恆星。.

新!!: 天球和北天 (天球) · 查看更多 »

北極 (天文)

北極在國際天文聯合會的定義是行星在地理上的北極點,或是太陽系內其他行星在黃道座標內,與地球的北極點位於相同半球內的極點;更明確的說,"北極是行星的自轉軸位於太陽系不變的平面北方那一側的點" 。這個定義的意義是天體自轉軸的傾角永遠不大於90°,但是旋轉的週期可能是負值(逆轉的) –換言之,當從北極觀察轉動的方向時,他是順時針轉動的,而不像在地球上所觀察到的逆時針轉動。 另外一種常用的方法是使用右手定則來定義天體的北極:大拇指代表自轉軸的方向,能使天體順者手指的方向旋轉(逆時針方向)的極點就是北極 。採用這樣的定義,自轉軸的傾角可能會大於90°,但是轉動的週期永遠是正值。 行星在地理上的北極點投影到天球上,就定義出了天球的北極。 太陽系內的一些天體,包括土星的衛星土衛七和小行星 4179,沒有安定的地理北極。她們混亂的轉動是因為不規則的形狀以及受到鄰近行星和衛星的重力擾動,使得瞬間的自轉軸在她們的表面到處遊走,並且可能會短暫的消失(當天體對遙遠的恆星呈現靜止狀態時)。 行星磁極的定義也類似地球磁極的定義:她們是在行星表面上磁場方向與表面垂直的點,並向地球上一樣以確切的磁場方向來判定是磁北極或磁南極。地球的磁軸在方向上與自轉軸相近,意味著磁極是合理的靠在地理極點的附近。但是,並非所有的行星都是如此,例如天王星的磁軸的傾斜就達到約60°。 在特殊(但經常)的情況下,同轉衛星,還可以定義出四個極,她們是遠極、近極、前導極、與後隨極。以艾歐為例,木星的同轉衛星,因此他永遠以相同的一面朝向木星。他的表面上有一個點看木星永遠在天頂,也就是在頭頂正上方,這個點就是近極,也稱為下點或隨木點。在對蹠點上的那一點稱為遠極,木星永遠在他的的天底,也稱為反木點。艾歐在軌道上也會有一個不動的最遠點(這個點最佳的定義是,不在南北極與近遠軸定義出的平面上,位於前導面上的一個點) —這個點是前導極,而在他的對蹠點上的那個點就是後隨極。因此艾歐可以分為南半球與北半球、近半球與遠半球,或是前導半球與後隨半球。要注意這些極只是有意義的極,嚴格的說這些點並非不會移動,因為艾歐的軌道有微小的離心率,而且其他的衛星也會產生不規則的影響,使艾歐的方向會微微的晃動。.

新!!: 天球和北極 (天文) · 查看更多 »

分點

分點(equinox,或稱二分點)是想像中天球赤道在天球上的位置,是每年太陽穿過天球赤道和黃道在天球上交點的天文事件,這造成地球上各地的白天和夜晚幾乎等長。只有在分點的瞬間,地球上的日夜分界線(白天和夜晚分界之處)才會垂直於赤道。其結果是地球的南北兩半球得到相同的照明。 換言之,分點是日下點正好落在赤道上的唯一時刻,意味著在赤道上會看見太陽位在頭頂正上方。分點每年會出現兩次,大約分別在3月21日(春分)和9月23日(秋分)。在春分,日下點由南向北通過赤道,而秋分則是日下點由北向南通過赤道。 分點和至點直接關係到每年的季節。在北半球,多數的文明在傳統上以三月的春分點(vernal equinox)標示著春季的開始,以九月的秋分點(autumnal equinox)標示著秋季的開始。在南半球,春分點在九月,而秋分點在三月。 追溯equinox這個字的源頭來自拉丁文的aequi nox,意思是日夜等分。實際上只是近似如此,當太陽經過分點時,陽光平均的照射在南北兩半球,地球上各地的日照時間都是一樣的長(不是日夜等長)。 由於歲差的影响,分點每年沿着赤道向西移動七分之一弧秒。.

新!!: 天球和分點 · 查看更多 »

分至圈

分至圈是天文學在天球上的兩條主要子午線。.

新!!: 天球和分至圈 · 查看更多 »

周日運動

周日運動亦稱周日視運動,是描述地球上的觀測者每天觀測到天空上的天體明顯的視運動狀態,在近極區尤為明顯。這由於地球繞軸自轉使然,使得所有天體都繞著這個軸(從觀測者眼中即繞著北極星)作圓周運動,這個圓圈稱周日圈,完成一圈運動需時23小時56分4.09秒(即一整個恆星日)。而日、月之東升西落也是周日運動之體現。.

新!!: 天球和周日運動 · 查看更多 »

哈勃超深空

哈伯深領域(英文:Hubble Ultra Deep Field,HUDF)是一張外太空照片,顯示的是天爐座的一小部份。該照片由哈勃空间望远镜於2003年9月24日至2004年1月16日期間得到的數據累積而成的,相當於113天的曝光。它是截至2006年為止以可見光拍攝的最深遠的宇宙影象,顯示的是超過130億年前的情況。此中估計有10,000個星系。 哈勃超深空中所顯示的範圍為3平方角分,只有全天空12,700,000分之一的面積,位於赤經3h 32m 40.0s,赤緯-27°47' 29"(J2000)天爐座的一小片天區。而照片的左上角則指向天球的北方。選擇這個範圍的理由是因為附近(約為滿月十分之一大小的面積)沒有較光亮的星體。雖然通過紅外線,在地面望遠鏡也能觀測到照片中大部份的物體,但只有通过哈勃空间望远镜才能以可見光觀測這些遙遠的目標。 隨著哈勃空间望远镜在軌道運行共400圈,照片是由800次曝光合成,當中先進巡天照相機(Advanced Camera for Surveys)及近紅外線照相機和多目標分光儀(Near Infrared Camera and Multi-Object Spectrometer)分別累積共11.3天及4.5天的拍攝時間。照片中最暗的星體只有30等,即望远镜每分鐘只接收到一粒來自星體的光子。 根據大爆炸理論,宇宙的年齡有限;而因為遠處星系的光線需要較長時間才到達地球,哈勃超深空有助於人類了解宇宙形成初期星系形成及合併的情況。另外因為照片所呈現的星系都是較為年輕的,故亦發現其性質與地球附近較年老的星系有所不同,這些早期星系發出的光線多為紫外光。然而拍攝的光波波長,因相對論性都卜勒效應關係,照片實際上是拍攝光譜中紅外線部份。.

新!!: 天球和哈勃超深空 · 查看更多 »

冲力说

冲力说(theory of impetus)是六世纪時亚历山卓的一个学者John Philoponus提出的。他否认天体由神灵推动的自然观。他认为上帝创世之初就赋予天体一种“冲力”。这是一种不随时间流逝的动力,这种动力可以维持物体永远运动下去。因此,运动的物体一般并不需要经常有个推动者和它接触。.

新!!: 天球和冲力说 · 查看更多 »

几何学

笛沙格定理的描述,笛沙格定理是欧几里得几何及射影几何的重要結果 幾何學(英语:Geometry,γεωμετρία)簡稱幾何。几何学是數學的一个基础分支,主要研究形狀、大小、圖形的相對位置等空間区域關係以及空间形式的度量。 許多文化中都有幾何學的發展,包括許多有關長度、面積及體積的知識,在西元前六世紀泰勒斯的時代,西方世界開始將幾何學視為數學的一部份。西元前三世紀,幾何學中加入歐幾里德的公理,產生的欧几里得几何是往後幾個世紀的幾何學標準。阿基米德發展了計算面積及體積的方法,許多都用到積分的概念。天文學中有關恆星和行星在天球上的相對位置,以及其相對運動的關係,都是後續一千五百年中探討的主題。幾何和天文都列在西方博雅教育中的四術中,是中古世紀西方大學教授的內容之一。 勒內·笛卡兒發明的坐標系以及當時代數的發展讓幾何學進入新的階段,像平面曲線等幾何圖形可以由函數或是方程等解析的方式表示。這對於十七世紀微積分的引入有重要的影響。透视投影的理論讓人們知道,幾何學不只是物體的度量屬性而已,透视投影後來衍生出射影几何。歐拉及高斯開始有關幾何物件本體性質的研究,使幾何的主題繼續擴充,最後產生了拓扑学及微分幾何。 在歐幾里德的時代,實際空間和幾何空間之間沒有明顯的區別,但自從十九世紀發現非歐幾何後,空間的概念有了大幅的調整,也開始出現哪一種幾何空間最符合實際空間的問題。在二十世紀形式數學興起以後,空間(包括點、線、面)已沒有其直觀的概念在內。今日需要區分實體空間、幾何空間(點、線、面仍沒有其直觀的概念在內)以及抽象空間。當代的幾何學考慮流形,空間的概念比歐幾里德中的更加抽象,兩者只在極小尺寸下才彼此近似。這些空間可以加入額外的結構,因此可以考慮其長度。近代的幾何學和物理關係密切,就像偽黎曼流形和廣義相對論的關係一樣。物理理論中最年輕的弦理論也和幾何學有密切關係。 几何学可見的特性讓它比代數、數論等數學領域更容易讓人接觸,不過一些几何語言已經和原來傳統的、欧几里得几何下的定義越差越遠,例如碎形幾何及解析幾何等。 現代概念上的幾何其抽象程度和一般化程度大幅提高,並與分析、抽象代數和拓撲學緊密結合。 幾何學應用於許多領域,包括藝術,建築,物理和其他數學領域。.

新!!: 天球和几何学 · 查看更多 »

全球災難危機

全球災難危機(Global catastrophic risk)是一個概念,假設人類於未來將遭逢全球災難性的事件,導致現代文明毀滅、倒退或衰落,又稱為世界末日。 而任何能讓人類滅絕或永久減損人類發展性的事件,則可稱為人類的生存危機。 潛在的全球災難危機包括各種天災人禍。天災包括小行星撞擊、超級火山爆發、伽瑪射線暴、氣候變遷等,或磁暴發生,摧毀全球電子設備。甚至外星生命入侵地球,也可能導致人類 而隨著人類科技發展,人工智慧叛變、、等新科技都可能引發技術危機。無能的全球治理政策則可能在導致人類社會、政治、全球系統出現危機。例如第三次世界大戰爆發,帶來、生物恐怖主義、,摧毀各種維生管線(如輸電網絡),毀壞人類文明。全球暖化、、人口過剩等危機,則因全球系統崩壞而出現,帶來物種滅絕與饑荒。.

新!!: 天球和全球災難危機 · 查看更多 »

光速

光速,指光在真空中的速率,是一個物理常數,一般記作,精確值為(≈ m/s)。這一數值之所以是精確值,是因為米的定義就是基於光速和國際時間標準上的。根據狹義相對論,宇宙中所有物質和訊息的運動和傳播速度都不能超過。光速也是所有無質量粒子及對應的場波動(包括電磁輻射和引力波等)在真空中運行的速度。這一速度獨立於射源運動以及觀測者所身處的慣性參考系。在相對論中,起到把時間和空間聯繫起來的作用,並且出現在廣為人知的質能等價公式中:.

新!!: 天球和光速 · 查看更多 »

勒托

画:提堤俄斯企图强奸勒托;两旁的人物是阿波罗和阿耳忒弥斯 勒托(希腊语:Λητώ,多利安語:Λατώ,Leto)希腊神话中的一个女提坦。她是宙斯的众多配偶之一,并且是阿波罗与阿耳忒弥斯的母亲。在罗马神话中,她的对应者是拉托娜。.

新!!: 天球和勒托 · 查看更多 »

回归年

回歸年(),也稱為太陽年(),是由地球上觀察,太阳平黄经变化360°,即太陽再回到黃道(在天球上太陽行進的軌道)上相同的點所經歷的時間。相對於分點和至點,精確的時間取決於你在黃道上所選擇的點:從北半球的春分點,四個基礎點之一,開始的稱為春分點年;對在黃道上所有的點取平均值的年稱為平回歸年。歲實是中國用的回歸年,是從冬至再回到冬至所經歷的時間。 在地球上,人類注意到回歸年的進展,從太陽緩慢的由南向北和再回頭的運動,希臘人由帶有「轉動」意義的tropos引申出「tropical」這個字,中文的意思就是「回歸」。太陽運行到最北邊和最南邊的回歸分別由北回歸線和南回歸線標示,也是仍能看見「日正當中」的緯度。太陽位置可以由每天正午時指時針(一根垂直的柱子或棍子:圭)影子的長短來測量,這是測量每年長度最自然的方法:以日照來確認季節。 因為春分點受到進動的影響在黃道上退行,因此回歸年比恆星年短一點,在2000年兩者相差20.409分,在1900年是20.400分。 回归年是制定各种阳历(含现行公历)和阴阳历的基础,中国传统历法中將冬至點測量的一回歸年稱做一“歲”。 1回归年.

新!!: 天球和回归年 · 查看更多 »

王蕃

王蕃(),字永元,三国时庐江(今安徽庐江西南)人。吳國時期官員。以博学多才著称,后因处事刚正被孙皓所杀。他对天文、历法都有精深研究,曾制作浑天仪,编制《乾象历》。.

新!!: 天球和王蕃 · 查看更多 »

球面天文学

球面天文學也稱為位置天文學,是天文學的一個分支,用於確定在任何一個日期和時間由地球上的任意地點所看見的物體在天球上的位置。這是天文學最古老的分支之一,依靠數學的球面幾何學和測量的天體測量學為工具,可以回溯至上古。觀測天體並且持續紀錄,對宗教、守時和航海都是很重要的工作。在天文學上,精確的測量天體位置的科學稱為天體測量學。 球面天文學的主要元素是座標系統和時間。天體在天球上的位置最常使用赤道座標系統,是以地球赤道在天球上的投影為基礎建立的。天體在這個系統內的位置以赤經(α)和赤緯(δ)來標示。相對於地點和時間的位置則可以使用地平座標系統以高度和方位來表示。 在星表中臚列出來的星系和恆星的位置,都是在特定年份中的位置。由於歲差和章動的雙重影響,會使天體的位置隨著時間而改變,而這些與地球的運動有關的位置改變,都會在週期性的出版品上予以修正。 天體曆是確認太陽和行星位置使用的參考表,其中列出了這些天體在特定時間於天球上的位置,可以經由適當的轉換得到在其他座標中的位置。 人類以肉眼在最好的環境下約可見6,000顆恆星(全天計),但在任何時間都有一半是在地平線下看不見的。現代星圖中,人類把天球劃分成88個星座並有標準的星座邊界,每一顆恆星僅能歸屬於一個星座。星座在航海上非常有用,舉例如居於北半球,可利用北極星找到北方,因為它永遠位於天北極附近。.

新!!: 天球和球面天文学 · 查看更多 »

类星体

類星體 (quasar,,也以QSO或quasi-stellar object為人所知)是極度明亮的活躍星系核(AGN,active galactic nucleus)。大多數星系的核心都有一個超大質量黑洞,它的質量從百萬至數十億太陽質量不等。在類星體和其它形式的活躍星系核,黑洞被氣態的吸積盤環繞著。當吸積盤中的氣體朝向黑洞墬落,能量就會以電磁輻射的形式釋放出來。這些輻射被觀測到可以跨越電波、紅外線、可見光、紫外線、X射線、和γ射線等電磁頻譜的波長。類星體輻射的功率非常巨大:最強大的類星體的光度超過1041 瓦特,是普通星系,例如銀河系,的數千倍。 "類星體"這個名詞源自於準恆星狀電波源(quasi-stellar radio source)的縮寫,因為在20世紀50年代發現這種天體時,被認定為未知物理源的電波發射源。當在可見光的照相圖中篩檢出來時,它們類似可見光的星狀微弱光點。 類星體的高解析影像,特別是哈伯太空望遠鏡,已經證明類星體是發生在星系的中心,一些類星體的宿主星系是強烈的交互作用星系或.

新!!: 天球和类星体 · 查看更多 »

約翰·拜耳

約翰·拜耳(Johann Bayer,)德國天文學家和律師,生於巴伐利亞的雷(地名)。他於1592年開始在印格爾斯塔學習哲學,不久後移居至奧格斯堡從事律師的工作。他在奧格斯堡時對天文產生了興趣,最大的成就是在1612年成為奧格斯堡市議會的法律顧問,於1625年逝世。 他最著名的是編制星圖:測天圖(Uranometria),於1603年出版,是第一本涵蓋了整個天球的星圖。他介紹了新的恆星命名系統,成為現今所知的拜耳命名法,他也命名了一些現代仍在使用的星座。 在月球,有一個坑穴以他為名,稱為拜耳坑。 Category:德国天文学家 Category:巴伐利亞人.

新!!: 天球和約翰·拜耳 · 查看更多 »

紅移

在物理學领域,紅移(Redshift)是指電磁輻射由於某种原因導致波长增加、頻率降低的现象,在可見光波段,表现为光谱的谱线朝紅端移動了一段距离。相反的,電磁輻射的波長变短、频率升高的现象则被稱為藍移。紅移最初是在人们熟悉的可见光波段发现的,随着对电磁波谱各个波段的了解逐步加深,任何电磁辐射的波長增加都可以称为紅移。对於波长较短的γ射線、X-射線和紫外線等波段,波长变长确实是波谱向红光移动,“红移”的命名并无问题;而对於波长较长的紅外線、微波和無線電波等波段,尽管波长增加實際上是遠離红光波段,这种现象还是被称为“红移”。 當光源移動遠離觀測者时,观测者观察到的电磁波谱會發生紅移,这类似于聲波因为都卜勒效應造成的頻率變化。這樣的紅移现象在日常生活中有很多應用,例如都卜勒雷達、雷達槍,在天體光譜學裏,人们使用都卜勒紅移測量天體的物理行為 。 另一種紅移稱為宇宙學紅移,其機制為。這機制說明了在遙遠的星系、類星體,星系間的氣體雲的光谱中觀察到的红移现象,其紅移增加的比例與距離成正比。這種關係为宇宙膨脹的观点提供了有力的支持,比如大霹靂宇宙模型。 另一種形式的紅移是引力紅移,其為一種相對論性效應,當電磁輻射傳播遠離引力場時會觀測到這種效應;反過來說,當電磁輻射傳播接近引力場時會觀測到引力藍移,其波長變短、频率升高。 红移的大小由“红移值”衡量,红移值用Z表示,定义为: 这裡\lambda_0\,是谱线原先的波长,\lambda\,是观测到的波长,f_0\,是谱线原先的频率,f\,是观测到的频率。.

新!!: 天球和紅移 · 查看更多 »

維斯托·斯里弗

維斯托·梅爾文·斯里弗(Vesto Melvin Slipher,)是一位美國天文學家。其弟厄爾·查爾斯·斯里弗也是天文學家,並且是羅威爾天文台台長。.

新!!: 天球和維斯托·斯里弗 · 查看更多 »

織女一

織女一又稱為織女星或天琴座α(α Lyr,α Lyrae),是天琴座中最明亮的恆星,在夜空中排名第五,是北半球第二明亮的恆星,僅次於大角星。它與大角星及天狼星一樣,是非常靠近地球的恆星,距離地球只有25.3光年;它也是太陽附近最明亮的恆星之一。在中國古代的「牛郎織女」神話中,織女為天帝孫女,故亦稱天孫。 天文學家對織女星進行過大量的研究,因此它「無疑是天空中第二重要的恆星,僅次於太陽」。織女星大約在西元前12,000年曾是北半球的極星,但因歲差現象地球自轉軸傾斜,再加上日月對地球各部份的引力並不一致,使地球自轉軸緩慢轉圈,週期約兩萬六千年,稱為歲差現象。,它在13,727年會再度成為北極星,屆時它的赤緯會達到+86°14'。織女星是太陽之外第一顆被人類拍攝下來的恆星,也是第一顆有光譜記錄的恆星。它也是第一批經由視差測量估計出距離的恆星之一。織女星也曾是測量光度亮度標尺的校準基線,是UBV測光系統用來定義平均值的恆星之一。在北半球的夏天,觀測者多半可在天頂附近的位置見到織女星,因為身為天文學上星等的標準,其視星等被定義為0等,因此天文學家會以織女星作為光度測定的標準。 織女星的年齡只有太陽的十分之一,但是因為它的質量是太陽的2.1倍,因此它的預期壽命也只有太陽的十分之一;這兩顆恆星目前都在接近壽命的中點上。織女星的光譜分類為A0V,其溫度比天狼星的A1V高一點。它仍处於主序星階段,透過把核心內的氫聚變成氦來發光發熱。織女星比氦重(原子序數較大)的元素豐度異常的低,織女星光度有輕微的周期性變化,因此天文學家懷疑它是一顆變星。它的自轉相當快速,赤道自轉速度是每秒274公里。離心力的影響導致恆星的赤道向外突起,溫度的變化通過光球表面在極點達到最大值。地球上的觀測者視線正朝著織女星的極點。天文學家經過測定後,得知織女星每12.5小時自轉一周,整顆恆星呈扁平狀,赤道直徑比兩極大了23%。 天文學家觀測到織女星紅外線輻射超量,顯示織女星似乎有塵埃組成的拱星盤。這些塵粒可能類似於太陽系的柯伊伯带,是岩屑盤中的天體碰撞產生的結果。這些由於塵埃盤造成紅外線輻射超量的恆星被歸類為類織女恆星。織女星盤的分布並不規則,顯示至少有一顆大小類似木星的行星環繞著織女星公轉。.

新!!: 天球和織女一 · 查看更多 »

纪限仪

纪限仪,又称距度仪,是中国古代用于测量60度角以内的任意两天体的角距离的天文仪器。现存北京古观象台上,由於自秦朝後「數以六為紀」(語出《秦始皇本纪》),故紀限儀亦稱六分儀,西方亦有同類似功能儀器。.

新!!: 天球和纪限仪 · 查看更多 »

经度

经度是一种用于确定地球表面上不同点东西位置的地理坐标。经度是一种角度量,通常用度来表示,并被记作希腊字母λ(lande)。子午线穿过南极和北极并把相同经度的点连起来。按照惯例,本初子午线是经过伦敦格林威治皇家天文台的子午线,是0度经线所在地。其他位置的经度是通过测量其从本初子午线向东或向西经过的角度得到的,经度的範圍为从本初子午线0° 向东至180°E 和向西至180° W。具体来说,某位置的经度是一个通过本初子午线的平面和一个通过南极、北极和该位置的平面所组成的二面角。(这就组成了一个右手坐标系,其z轴(右手拇指)从地球中心指向北极方向,其x轴(右手食指)从地球中心指向本初子午线与赤道的交点。) 如果地球是一个均质球体,那么一点的经度就等于过该点的南北铅垂面和格林尼治子午面之间夹角的角度。地球上任何地方的南北铅垂面都会包含地球的自转轴。但是地球并不是均质的,而是有很多山脉,在山脉的重力影响下,铅垂面就会偏离地球的自转轴。即便如此,南北铅垂面仍然会和格林尼治子午面相交于某个角度,该角度被称为天文经度,通过天文观测来确定。地图和GPS设备上显示的经度是格林尼治子午面与过该点的一个非严格铅垂面之间夹角的角度,该非严格铅垂面垂直于一个近似于大地水准面的椭球体表面,而不是直接垂直于大地水准面本身。 作为起点,过去其它国家或人也使用过其它的子午线做起点,比如罗马、哥本哈根、耶路撒冷、圣彼德堡、比萨、巴黎和费城等。在1884年的国际本初子午线大会上格林维治的子午线被正式定为经度的起点。東經180°即西經180°,約等同於國際日期變更線,國際日期變更線的兩邊,日期相差一日。 经度的每一度被分为60角分,每一分被分为60秒。一个经度因此一般看上去是这样的:东经23° 27′ 30"或西经23° 27′ 30"。更精确的经度位置中秒被表示为分的小数,比如:东经23° 27.500′,但也有使用度和它的小数的:东经23.45833°。有时西经被写做负数:-23.45833°。偶尔也有人把东经写为负数,但这相当不常规。 一个经度和一个纬度一起确定地球上一个地点的精确位置。纬度的每个度的距離大约相当于111km,但经度的每个度的距离从0km到111km不等。它的距离随纬度的不同而变化,沿同一緯度約等于111km乘纬度的余弦。不过这个距离还不是相隔一经度的两点之间最短的距离,最短的距离是连接这两点之间的大圆的弧的距离,它比上面所计算出来的距离要小一些。 一个地点的经度一般与它于协调世界时之间的时差相应:每天有24小时,而一个圆圈有360度,因此地球每小时自转15度。因此假如一个人的地方时比协调世界时早3小时的话,那么他在东经45度左右。不过由于时区的分划也有政治因素在里面,因此一个人所在的时区不一定与上面的计算相符。但通过对地方时的测量一个人可以算得出他所在的地点的经度。为了计算这个数据,他需要一个指示协调世界时的钟和需要观察对太阳经过子午圈的时间。由于地球在一个椭圆轨道上绕太阳旋转,这个计算和观察比上面叙述的还要复杂些。.

新!!: 天球和经度 · 查看更多 »

環形球儀

形球儀(也可以稱為球形等高儀或渾儀,英文縮寫為armilla或armil)是中国古代测定天体位置的一种仪器。由相应天球坐标系各基本圈的环规及瞄准器构成,与浑象(浑天仪,一种仿真天体运行的仪器)不同。其主要用作展示圍繞地球的天體軌跡。浑儀也是最早期的複雜機械儀器,其發展促進了機器的改良和設計。 中國的渾儀西汉落下闳曾制造。《朱子语类》卷二十三錄朱熹與弟子黄义刚曾討論過浑仪的原理,黄义刚曾说:“楼上浑仪可见”,表示朱熹家可能有此種儀器。《宋史·天文志一》亦載:“朱熹家有浑仪,颇考水运制度,卒不可得。” 浑儀是由有刻度的金屬圈組成,這些圓形的骨架代表天體的赤道、黃道、子午圈等。金屬球代表天體,而浑儀的中央通常是地球或太陽。中國古代的渾儀還有代表白道的圓圈和協助觀察用的窺管(作用如同望遠鏡,但沒有鏡片)。由於歷代渾儀增加的圓圈太多,妨礙觀察,元朝郭守敬把圓圈簡化,稱為簡儀。 托勒密利用大型的浑仪作為仔細的觀測工具。浑仪在中世紀末期時再度興起。丹麥天文學家第谷(1546年至1601年)建造了作天文觀測用的大型浑仪。文藝復興時間的科學家和公眾人物的畫像中,通常畫有一浑仪,畫中人其中一隻手放在浑仪上,代表他們擁有高度的智慧和知識。葡萄牙國旗上畫有浑仪。自馬努埃一世起浑仪成為該國之象徵。.

新!!: 天球和環形球儀 · 查看更多 »

環狀電流

電流是被困在行星磁層內的帶電粒子所運載的電流,它是在經度(縱剖面) 上漂移的高能(10–200 keV)粒子。.

新!!: 天球和環狀電流 · 查看更多 »

用於數學、科學和工程的希臘字母

希臘字母被用於數學、科學、工程和其他方面。在數學方面,希臘字母通常用於常數、特殊函數和特定的變數,而且通常大寫和小寫都有分別,而且互不相關。有一些希臘字母和拉丁字母一樣,而且不被使用:A, B, E, H, I, K, M, N, O, P, T, X, Y, Z。除此之外,由於小寫的ι(iota),ο(omicron)和υ(upsilon)跟拉丁字母i,o和u相似,所以很少被使用。有時,希臘字母的字體變種在數學數有特定的意思,例如φ(phi)和π(pi)。 在金融數學中,有些會用來表示投資風險的變數。 母語為英語的數學家在讀希臘字母時,他們不會用現在的或古時的發音,但用傳統的英語發音。例如θ,數學家會讀成/ˈθeɪtə/。(古時:,現在:).

新!!: 天球和用於數學、科學和工程的希臘字母 · 查看更多 »

牧夫座

牧夫座(拉丁语:Boötes)是北天的一個星座,在天球上的位置跨越赤緯0°至+60°,赤經13時至16時。名稱源自希臘Βοώτης,Boōtēs,意思是牧羊人或農夫(照字義是駕牛者,源自拉丁文的bovis 與“cow”,轉化成boos)。在名稱中的"ö"是分音符號,不是母音,意思是每個'o'要明確的個別發音。 牧夫座是現代的88個星座之一,也是第二世紀的天文學家托勒密敘述的48個星座之一。它含了全夜空中的第四亮星,橙巨星的大角星。牧夫座也是其他許多亮星的家,包括8顆比4等亮的星和21顆5等以上的星,總共有29顆肉眼可以輕鬆看見的恆星。.

新!!: 天球和牧夫座 · 查看更多 »

物理学史

物理学主要是研究物质、能量及它們彼此之間的關係。它是最早形成的自然科学学科之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理學》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比伦和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德的学说以及其后的经院哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自於这些哲学传统,并在中世纪时由当时的哲学家、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。.

新!!: 天球和物理学史 · 查看更多 »

狐狸座

座(Vulpecula)是一個位於北天球銀河中的模糊星座,在天鵝座南方。17世紀末波蘭天文學家赫維留命名為「狐狸與鵝」。.

新!!: 天球和狐狸座 · 查看更多 »

白道

白道可以指:.

新!!: 天球和白道 · 查看更多 »

在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.

新!!: 天球和角 · 查看更多 »

角宿一

--一(α Vir / 室女座α /英语:Spica)位於室女座,是全天空第十五亮的恆星,也是室女座最明亮的恆星。北半球的觀測者在春季夜晚,可以在東南方向的天空看到这颗明亮的1等星。想要找到角宿一,觀測者只需要沿着位于大熊座的北斗七星的斗柄和牧夫座的大角连成的曲线方向往下就可以看到它。角宿一是一顆藍巨星,屬於仙王座β型變星。角宿一距離地球有260光年之遥。.

新!!: 天球和角宿一 · 查看更多 »

角分

角分(minute of angle,简称MOA),又稱弧分(minute of arc、arc minute或minute arc),是量度平面角的單位,符號為′,在不會引起混淆時,可簡稱作分。「角分」二字只限用於描述角度,不能於其他以「分」作單位的情況使用(如時間的分,或者考試分數)。 完整的周角为360度,1度等於60分,1分等於60 秒。以數學等式來表示即:.

新!!: 天球和角分 · 查看更多 »

视星等

视星等(apparent magnitude,符號:m)最早是由古希腊天文学家喜帕恰斯制定的,他把自己编制的星表中的1022颗恒星按照亮度划分为6个等级,即1等星到6等星。1850年英国天文学家普森发现1等星要比6等星亮100倍。根据这个关系,星等被量化。重新定义后的星等,每级之间亮度则相差2.512倍,1勒克司(亮度单位)的视星等为-13.98。 但1到6的星等并不能描述当时发现的所有天体的亮度,天文学家延展本來的等級──引入「负星等」概念。这样整个视星等体系一直沿用至今。如牛郎星为0.77,织女星为0.03,除了太陽之外最亮的恒星天狼星为−1.45,太阳为−26.7,满月为−12.8,金星最亮时为−4.89。现在地面上最大的望远镜可看到24等星,而哈勃望远镜则可以看到30等星。 因为视星等是人们从地球上观察星体亮度的度量,它实际上只相当于光学中的照度;因为不同恒星与地球的距离不同,所以视星等并不能指示出恒星本身的发光强度。 由于视星等需要同时考虑星体本身光度与到地球的距离等多重因素,会出现距离地球近的星体视星等不如距离远的星体的情况。例如巴纳德星距离地球仅6光年,却无法被肉眼所见(9.54等)。 如果人们在理想環境下(清澈、晴朗且没有月亮的夜晚),肉眼能观察到的半個天空平均约3000颗星星(至6.5等計算),整个天球能被肉眼看到的星星則约有6000颗。大多数能为肉眼所见的星星都在数百光年内。现在人类用肉眼可以看见的最远天体是三角座星系,其星等约为6.3,距离地球约290万光年。历史上肉眼能看见的最远天体是GRB 080319B在2008年3月19日的一次伽玛射线暴,距离地球达到75亿光年,视星等达到5.8,相当于用肉眼看见那里75亿年前发出的光。 另外,宇宙中大量的星际尘埃也会影响到星星的视星等。由于尘埃的遮蔽,一些明亮的星星在可见光上将变得十分暗淡。有一些原本能为肉眼所见的恒星变得再也无法用肉眼看见,例如银河系中心附近的手枪星。 星星的视星等也随着星星本身的演化、和它们与地球的距离变化而变化当中。例如,当超新星爆发时,星体的视星等有机会骤增好几个等级。在未来的几万年内,一些逐渐接近地球的恒星将会显著变亮,例如葛利斯710在约一百万年后将从9.65等增亮到肉眼可见的1等。.

新!!: 天球和视星等 · 查看更多 »

超新星

超新星是某些恒星在演化接近末期时经历的一种剧烈爆炸。这种爆炸都极其明亮,过程中所突发的电磁辐射经常能够照亮其所在的整个星系,并可持续几周至几个月才会逐渐衰减变为不可见,而期间内一颗超新星所辐射的能量可以与太阳在其一生中辐射能量的总和相當。恒星通过爆炸会将其大部分甚至几乎所有物质以可高至十分之一光速的速度向外抛散,并向周围的星际物质辐射激波。这种激波会导致形成一个膨胀的气体和尘埃构成的壳状结构,这被称作超新星遗迹。超新星是星系引力波潛在的強大來源。初級宇宙射線有很大的比例來自超新星 。 超新星比新星更有活力。超新星的英文名稱為 supernova,nova在拉丁語中是“新”的意思,這表示它在天球上看上去是一顆新出現的亮星(其實原本即已存在,因亮度增加而被認為是新出現的);字首的super-是為了將超新星和一般的新星有所區分,也表示超新星具有更高的亮度。超新星這個名詞是沃爾特·巴德和弗裡茨·茲威基在1931年創造的。 超新星可以用兩種方式之一觸發:突然重新點燃核融合之火的簡併恆星,或是大質量恆星核心的重力塌陷。在第一種情況,一顆簡併的白矮星可以透過吸積從伴星那兒累積到足夠的質量,或是吸積或是合併,提高核心的溫度,點燃碳融合,並觸發失控的核融合,將恆星完全摧毀。在第二種情況,大質量恆星的核心可能遭受突然的引力坍縮,釋放重力位能,可以創建一次超新星爆炸。 最近一次觀測到銀河系的超新星是1604年的克卜勒之星(SN 1604);回顧性的分析已經發現兩個更新的殘骸 。對其它星系的觀測表明,在銀河系平均每世紀會出現三顆超新星,而且以現在的天文觀測設備,這些銀河超新星幾乎肯定會被觀測到 。它們作用的角色豐富了星際物質與高質量的化學元素。此外,來自超新星向外膨脹的激波可以觸發新恆星的形成。.

新!!: 天球和超新星 · 查看更多 »

鹿豹座

鹿豹座,是北天球一个较大的星座,组成鹿豹座的星星都是暗星,1612年(或1613年)始由普朗修斯(Plancius)定義星座。在日本稱為麒麟座。.

新!!: 天球和鹿豹座 · 查看更多 »

黃經

黃經(太陽經度或天球經度)是在黃道座標系統中用來確定天體在天球上位置的一個座標值(另一個值是黃緯),在這個系統中,天球被黃道平面分割為南北兩個半球。 黃道是太陽在一年中橫越過天球的路徑,在一年中會穿越天球赤道兩次,一次是在春分點,另一次是在秋分點。由於在黃道上沒有明顯的可以做為黃道經度0度的點,因此春分點被人为的指定為黃經0度的位置,天體的黃經度就是由天體沿自转方向至春分點的角距離。 黃道座標對太陽系的天體非常有用。例如,在曆書上所給的太陽經度就是以黃經量度的。.

新!!: 天球和黃經 · 查看更多 »

黃緯

黃緯,或稱為天球緯度,是在黃道座標系統中用來確定天體在天球上位置的一個座標值(另一個值是黃經),在這個系統中,天球被黃道平面,或是地球的軌道平面,分割為南北兩個半球。從地球上透視,太陽永遠在黃緯0度的緯度上運動。黃緯是在黃道南邊或北邊的角度,類似於地球的緯度以赤道分割成南北半球。行星和太陽系的其他多數天體都傾向於在低黃緯的位置上。.

新!!: 天球和黃緯 · 查看更多 »

黃道坐標系

黃道坐標系,又作黃道座標系,是以黄道作基準平面的天球坐標系統,多用作研究太陽系天體運動情況之用。.

新!!: 天球和黃道坐標系 · 查看更多 »

黃道帶

黃道帶(希臘語:ζῳδιακός, zōdiakos),是天文學的名詞,指的是在黃道上的星座組成的環帶,不僅是太陽每年在天球上所行經的路徑,月球和行星的路徑也大略都在黃道的附近,因此也全部都在黃道帶的星座內。在占星術,黃道帶被人爲劃分為十二個隨中氣點移動(與實際星座位置不一致)的均等區域,各自都有符號。因此,黃道帶是一個天球座標系統,或是更具體的說是一個黃道座標系統,以黃道做為緯度的基準平面(原點),並且以太陽在春分時的位置作為經度的原點。 在羅馬時代已經有黃道帶了,這是繼承自希臘天文學並可追溯至巴比倫天文學和迦勒底人時代(西元前的千禧年中期)的概念,其中,還導出了一個更早期列出的黃道周圍恆星表,在托勒密的《天文學大成》(西元2世紀)已經有黃道結構的描述。 黃道帶這個名詞也可以代表行星在天球上移動路徑的區域,它涵蓋了黃道上下各8度的範圍。對應於不同的行星,黃道帶也有不同的寬度,例如,"月球的黃道帶"是黃道上下5度的區域。再擴大範圍,"彗星的黃道帶"可以包括大部分短周期彗星的路徑。 黃道帶的英文,zodiac,起源於拉丁文的zōdiacus,而這個字又是從希臘文的ζῳδιακὸς κύκλος(zōdiakos kuklos)演變而來的,原意為"動物圈(獸帶)",是從ζώδιον(zōdion)轉變來的,指的是小型的"動物"ζῶον(zōon)。這種詞意上的轉換是基於在傳統希臘的黃道帶原本就有一半以上是動物(除了兩個是神話創造的。)。 天文學除了使用赤道座標系統外,也使用以黃道帶為基礎的黃道座標系統,同時這些名詞和12個符號的名稱也被用在占星術的天宮圖中。.

新!!: 天球和黃道帶 · 查看更多 »

黃道面

道面(plane of the ecliptic)的定义中,是假想地球是不动的,而太陽绕地球旋转。黄道面即为太陽绕地球旋转的轨道平面,目前与地球赤道面交角为23°26'。由于月球和其它行星等天体的引力影响地球的公转运动,黄道面在空间的位置总是在不规则地连续变化。但在变动中,任一时间这个平面总是通过太阳中心。黄道面和天球相交的大圆称为黄道。 黃道面與赤道面的交集稱為交點線(line of nodes)。春分點與秋分點都包含於交點線,是交點線與黃道的交集。.

新!!: 天球和黃道面 · 查看更多 »

黃極 (天文)

黃極是垂直於地球繞著太陽的軌道面——黃道面的線與虛擬的天球相交會的點。 黃極有兩個: 由於歲差,天極以大約25,800年的周期在圓軌道環繞著黃極運動。 黃極在2009年8月26日的座標值是:.

新!!: 天球和黃極 (天文) · 查看更多 »

黄道

道是太阳在天球上的视运动轨迹,它是黄道坐标系的基准。另外,黄道也指太阳视运动轨迹所在的平面,它和地球绕太阳的轨道共面(看起来像是太阳绕着地球转) 。太阳的视运动轨迹并不能经常被观测到,地球自转产生了日出与日落的变化,这掩盖了太阳相对其他星星运动的轨迹。 黃道是在一年當中太陽在天球上的視路徑,看起來它在群星之間移動的路徑,明顯的也是行星在每年中所經過的路徑。更明確的說,它是球狀的表面(天球)與黃道平面的交集;以幾何學來描述,它是包含地球環繞太陽運行的平均軌道平面。 西方的黃道(ecliptic)一詞是從蚀(eclipse)發生的地方延伸出來的。 由于地球公转受到月球和其他行星的摄动,地球公转轨道并不是严格的平面,即在空间产生不规则的连续变化,这种变化包括多项短周期的和一项缓慢的长期运动。短周期运动可以通过一定时期内的平均加以消除,消除了周期运动的轨道平面称为瞬时平均轨道平面。.

新!!: 天球和黄道 · 查看更多 »

齊彥槐

齊彥槐(),字蔭山,號梅麓,安徽婺源(今屬江西省)衝田人。 生於乾隆三十九年(1774年),年少時聰敏,下筆立就。汪由敦见而奇之,谓“皖省论才,当让此生独步”。嘉慶十三年(1808年)考舉人獲第二名,隔年中進士。授庶吉士,散館,改令授江苏常州府金匮县知县,勤政爱民,民称“齐青天”。有《衙齋書壁詩》十九首,載其治績。道光七年(1827年)署苏州府督粮同知。从优议叙候选知府。彥槐任職蘇州知府期間向江蘇巡撫陶澍提出開闢發展海運的建議。巡撫以“海運既久,不必更張”為由否定此議。罷官後,僑寓荊溪,精于鑒藏。 齊彥槐又精於科學、天文、地理、交通,道光十年(1830年)製作“自动浑仪”、“中星仪”,中星仪是一個高33.4厘米的圆型天球,球面阴刻星象、节候,內有齒輪等機構,将天球内部的发条旋紧,球體即可缓缓旋转,时人稱中星仪:“开千古以来未有之能事,诚精微之极至矣。”。中星仪至今仍存安徽省博物馆。道光十六年(1836年)返故里婺源主持撰修《翀麓齐氏族谱》,曾于冲田红庙之东建造了一座双面日晷。又能詩,尤其擅长駢体律赋,林则徐曰:“近数十年海内诗家,惟齐某必传。”道光二十一年(1841年)病故於宜兴。著有《梅麓詩文集》二十六卷,《海運南漕叢議》一卷、《北極星緯度分表》四卷,及《天球淺說》、《中星儀說》各一卷、《书画录》、《松雪斋墨刻》等。魏源等人所編《清經世文編》卷四十八《戶政二十三·漕運下》,曾收錄齊彥槐《海運南漕議》一文。次子齊學裘。.

新!!: 天球和齊彥槐 · 查看更多 »

轨道 (力学)

在物理学中,轨道是一个物体在引力作用下绕空间中一点运行的路径,比如行星绕一颗恒星的轨迹,或天然卫星绕一颗行星的轨迹。行星的轨道一般都是椭圆,而且其绕行的质量中心在椭圆的一个焦点上。 当前人们对轨道运动原理的认识基于爱因斯坦的广义相对论,认为引力是由时空弯曲造成的,而轨道则是时空场的几何测地线。为了简化计算,通常用基于开普勒定律的万有引力理论来作为相对论的近似。.

新!!: 天球和轨道 (力学) · 查看更多 »

赤纬

赤纬(英文Declination;縮寫為Dec;符號為δ)是天文学中赤道座標系統中的两个坐标数据之一,另一个坐标数据是赤经。赤纬与地球上的纬度相似,是纬度在天球上的投影。赤纬的单位是度,更小的单位是“角分”和“角秒”,天赤道为0度,天北半球的赤纬度数为正数,天南半球的赤纬的度数为负数。天北极为+90°,天南极为-90°。值得注意的是正号也必须标明。 例如,织女星的确切赤纬(曆元2000.0)为+38°47'01"。 在观测者天顶的赤纬与該觀測地的纬度相同。.

新!!: 天球和赤纬 · 查看更多 »

赤经

赤經(英文Right ascension;縮寫為RA;符號為α)是天文學使用在天球赤道座標系統內的座標值之一,通过天球两极并与天赤道垂直,另一個座標值是赤緯。.

新!!: 天球和赤经 · 查看更多 »

赤道

赤道通常指地球表面的点随地球自转产生的轨迹中周长最长的圆周线,长。如果把地球看做一个绝对的球体的话,赤道距离南北两极相等。它把地球分为南北两半球,其以北是北半球,以南是南半球,是划分纬度的基线,赤道的纬度为0°。赤道的78.7%被海洋覆盖,余下的21.3%为陆地。除地球外,其他行星及天体也有类似的赤道。.

新!!: 天球和赤道 · 查看更多 »

赤道坐標系統

赤道坐標系統,又作赤道座標系統,大概是使用得最廣泛的天球坐標系統,他的元素是.

新!!: 天球和赤道坐標系統 · 查看更多 »

赤道仪

赤道儀是以一根平行於地球自轉軸旋轉的軸,就能追隨著天空(天球)旋轉的儀器裝置。這種類型的裝置常用於望遠鏡、衛星碟和相機。赤道儀的優勢在於它能夠允許聯接在其上的裝置只需要以固定的速率驅動一根軸就可以追蹤天空中以周日運動運行的任何天體。當做為衛星碟時,赤道儀的裝置允許只轉動一根軸就能同時指向好幾顆地球同步衛星。.

新!!: 天球和赤道仪 · 查看更多 »

银河系

銀河星系(古稱银河、天河、星河、天汉、銀漢等),是一個包含太陽系 的棒旋星系。直徑介於100,000光年至180,000光年。估計擁有1,000億至4,000億顆恆星,並可能有1,000億顆行星。太陽系距離銀河中心約26,000光年,在有著濃密氣體和塵埃,被稱為獵戶臂的螺旋臂的內側邊緣。在太陽的位置,公轉週期大約是2億4,000萬年。從地球看,因為是從盤狀結構的內部向外觀看,因此銀河系呈現在天球上環繞一圈的帶狀。 銀河系中最古老的恆星幾乎和宇宙本身一樣古老,因此可能是在大爆炸之後不久的黑暗時期形成的。在10,000光年內的恆星形成核球,並有著一或多根棒從核球向外輻射。最中心處被標示為強烈的電波源,可能是個超大質量黑洞,被命名為人馬座A*。在很大距離範圍內的恆星和氣體都以每秒大約220公里的速度在軌道上繞著銀河中心運行。這種恆定的速度違反了开普勒動力學,因而認為銀河系中有大量不會輻射或吸收電磁輻射的質量。這些質量被稱為暗物質。 銀河系有幾個衛星星系,它們都是本星系群的成員,並且是室女超星系團的一部分;而它又是組成拉尼亞凱亞超星系團的一部分。整個銀河系對銀河系外的參考坐標系以大約每秒600公里的速度在移動。.

新!!: 天球和银河系 · 查看更多 »

自行

自行是恆星相對於太陽系的質量中心,隨著時間變化的推移所顯示出在位置在角度上的改變,它的測量是以角秒/年為單位(3600角秒才等同於角度的1度)。反之,徑向速度是在視線方向上天體接近或遠離的速度,隨著時間推展的變化率,通常是測量輻射中的都卜勒頻移。自行不是恆星的本質(即恆星的內稟性質),因為它包含了太陽系本身運動的元素在內。由於光速是有限的,遙遠恆星的真實速度很難觀測得到,觀測自行反映的是恆星當時輻射光的運動。 自行的測量需要排除下列會影響觀測天體位置座標值的因素,這些因素主要有:.

新!!: 天球和自行 · 查看更多 »

蛇夫座

蛇夫座从地球看位于武仙座以南,天蝎座和人马座以北,银河的西侧。蛇夫座是星座中惟一与其他星座-巨蛇座直接連在一起,同时蛇夫座也是唯一同時橫跨天球赤道、银道和黄道的星座。蛇夫座既大又宽,形状长方,天球赤道正好斜穿过这个长方形。尽管蛇夫座跨越的银河很短,但银河系中心方向就在离蛇夫座不远的人马座内。银河在这里有一块突出的部分,形成了银河最宽的一个区域。.

新!!: 天球和蛇夫座 · 查看更多 »

考泰斯與考托佩斯

地區考古博物館(Museo Archeologico Regionale)裡面,位於義大利的巴勒莫(Palermo)境內。 考泰斯與考托佩斯(Cautes and Cautopates)是在古羅馬密特拉教所崇拜的聖像中描繪著伴隨主神密特拉斯的一對火炬手,作為屠牛像(Tauroctony)而讓世人所知。考泰斯將祂握的火炬上舉著,並且考托佩斯將祂握的火炬指向下方。.

新!!: 天球和考泰斯與考托佩斯 · 查看更多 »

HE 0437-5439

HE 0437-5439是一颗大质量的、未受到星系引力束缚的超高速星(HVS),因此也被称为HVS3。它是一颗B型的主序星,在天球上位於劍魚座,是在2005年是由欧洲南方天文台甚大望远镜(VLT)中的一台8.2米望远镜——Kueyen望远镜所发现。HE 0437-5439是一颗年轻的恒星,年龄在3000万年左右。它的质量接近太阳质量的9倍,距離地球約20萬光年,在天球的位置在大麦哲伦星系西北16度处,與地球距離比大麦哲伦星系还远。.

新!!: 天球和HE 0437-5439 · 查看更多 »

NGC 2451

NGC 2451是一個位於船尾座的疏散星團,天球座標為赤經7時45.4分,赤緯-14度58分,視覺觀測大小約45角分,亮度约2.8視星等,距地球850光年。 NGC 2451包含约40颗星,年龄约为三千六百万年,是一个比较年轻的星团。星团内的最亮星是弧矢三,是一个3.6等橘色巨星。 NGC 2451在1654年被意大利天文学家乔瓦尼·巴蒂斯特·霍迪尔纳(Giovanni Battista Hodierna)首次纪录在星表中,但是未见记载于夏尔·梅西耶的天体列表和威廉·赫歇尔的深空天體目錄。.

新!!: 天球和NGC 2451 · 查看更多 »

NGC 2477

NGC 2477是一個位於船尾座的疏散星團,天球座標為赤經7時52.3分,赤緯-38度33分,視覺觀測大小約27角分,亮度约5.8視星等,距地球4200光年。 NGC 2451包含约300颗星,年龄约为七亿年,是一个比较年轻的星团。因為所含的恒星很多,用雙筒鏡看似球狀星團。用小型望遠鏡可以辨識個別的恒星。 NGC 2451在1751年被法國天文学家尼可拉·路易·拉卡伊(Abbe Lacaille)首次纪录在星表中,但是未见记载于夏尔·梅西耶的天体列表和威廉·赫歇尔的深空天體目錄。.

新!!: 天球和NGC 2477 · 查看更多 »

NGC 4151

NGC 4151是位於獵犬座的帶有疏鬆內環結構的中間螺旋西佛星系,距離地球,天球上位於獵犬座。該星系由威廉·赫歇爾於1787年3月17日首次記錄;它0也是定義西佛星系的論文中提及的兩個星系之一 。NGC 4151是核心中擁有快速成長中的超大質量黑洞星系中距離地球最近的其中一個。天文學家推測NGC 4151的核心可能存在環繞質量中心旋轉中的雙黑洞,質量分別為4000萬和1000萬倍太陽質量,軌道週期15.8年。不過,該系統是否存在仍持續爭論中。 部分天文學家就NGC 4151的外觀,稱呼它為《索倫之眼》。.

新!!: 天球和NGC 4151 · 查看更多 »

NGC 6231

NGC 6231是一個位於天蠍座的疏散星團,天球座標為赤經16時54分,赤緯-41度48分,視覺觀測大小約45角分,亮度约2.6視星等,距地球5900光年。 NGC 6231年龄约为三百二十万年,是一个非常年轻的星团,星团内的最亮星是5等的天蝎座 ζ1星。用雙筒望遠鏡或小型望遠鏡就能看到個別的行星。 NGC 6231在1654年被意大利天文学家乔瓦尼·巴蒂斯特·霍迪尔纳(Giovanni Battista Hodierna)以Luminosae的名字首次纪录在星表中,但是未见记载于夏尔·梅西耶的天体列表和威廉·赫歇尔的深空天體目錄。这个天体在1678年被愛德蒙·哈雷(I.7)、1745年被夏西亚科斯(Jean-Phillippe Loys de Cheseaux)(9)、1751年被尼可拉·路易·拉卡伊(II.13)分别再次独立发现。.

新!!: 天球和NGC 6231 · 查看更多 »

NGC天體表

星雲和星團新總表(New General Catalogue of Nebulae and Clusters of Stars,縮寫:NGC) 是在天文學上非常著名的深空天體目錄,它收錄了7,840個天體。它由約翰·德雷耳编纂,它是作为威廉·赫歇爾星雲和星團總表的新版本。星雲和星團新總表是最大的一個綜合目錄,它包含所有類型的深空天體,並無被侷限在某一類,例如星系。德雷耳後來在1895年和1908年擴編了兩份NGC索引星表,增加了描述5,386個天體。 目錄中對南半球天空中的天體並沒有完整的調查,多數都只是約翰·赫歇耳或詹姆士·丹露帕的觀測。NGC有許多的錯誤,但是比較嚴重和明顯的錯誤在後續的NGC/IC計划中已經消除。後續未完成的修訂新總表(RNGC) 有1973年Sulentic和Tifft的版本,還有Sinnott在1988年的NGC2000.0。修訂的新總表和索引目錄由Wolfgang Steinicke編譯於2009年。.

新!!: 天球和NGC天體表 · 查看更多 »

SN 393

SN 393是中国在393年发现并记载的一颗超新星的现代编号。它位于天蝎座,是一颗位于银河系内的超新星。.

新!!: 天球和SN 393 · 查看更多 »

Stellarium

Stellarium是一款天文类自由软件,以GNU通用公共许可证发布,可以运行在Linux、Windows及Mac OS X操作系统中。Stellarium Mobile是该项目衍生的付费移动应用版本,支持安卓、iOS和塞班操作系统。Stellarium使用OpenGL对星空做实时渲染。.

新!!: 天球和Stellarium · 查看更多 »

WMAP冷斑點

WMAP冷斑點是2004年由WMAP在波江座檢測出的一個區域,該處的宇宙微波背景輻射(CMB)溫度比周圍要低。如此大和冷的區域在原始的CMB中發生的機率估計只有大約0.2% 。.

新!!: 天球和WMAP冷斑點 · 查看更多 »

恒星年

恆星年是太陽在天球上返回到對恆星而言的相同位置上的時間。恆星年是地球的軌道週期。一恆星年等於365.25636042 平太陽日,即365日6小時9分鐘10秒。一個真實的週期數總與兩個天體相對的週期數相差整整一週。回歸年比恆星年短20分鐘又24秒。 「恆星年」是地球圍繞太陽公轉的真正週期,也就是地球圍繞太陽公轉360°。.

新!!: 天球和恒星年 · 查看更多 »

恒星时

恒星时是天文学和大地测量学標示的天球子午圈值,由於借用了時間的計量單位,所以常被誤解為是一种时间单位。恒星时是根据地球自转来计算的,它的基础是恒星日(比地球的自轉週期短約8.4毫秒)。由于地球环绕太阳的公转运动,恒星日比平太阳日(也就是日常生活中所使用的日)短约1/365(相应约四分钟或一度)。 恒星时的定义是一个地方的子午圈与天球的春分点之间的时角,因此地球上每个地方的恒星时都与它的经度有关。 由于地球的章动春分点在天球上并不固定,而是以18.6年的周期围绕着平均春分点摆动。因此恒星时又分真恒星时和平恒星时。真恒星时是通过直接测量子午线与实际的春分点之间的时角获得的,平恒星时则忽略了地球的章动。真恒星时与平恒星时之间的差异最大可达约0.4秒。 一个地方的当地恒星时与格林尼治天文台的恒星时之间的差就是这个地方的经度(参见天体导航)。因此通过观测恒星时可以确定当地的经度(假如格林尼治天文台的恒星时已知的话)或者可以确定时间(假如当地的经度已知的话)。.

新!!: 天球和恒星时 · 查看更多 »

歲差 (天文)

歲差(axial precession,字面意義為「(自轉)軸進動」),在天文學中是指一個天體的自轉軸指向因為重力作用導致在空間中緩慢且連續的變化。例如,地球自轉軸的方向逐漸漂移,追蹤它搖擺的頂部,以大約25,800年的週期掃掠出一個圓錐(在占星學稱為大年或柏拉圖年)。「歲差」這個名詞通常只針對長期運動,其他在地軸準線上的變動 -章動和極移- 規模要小了許多。 在歷史上,地球的歲差被稱為分點歲差,這是因為 分點沿著黃道相對於背景的恆星向西移動,與太陽在黃道上的運動相反。在非技術的討論中仍沿用此一名詞,這點在詳細的數學中是不存在的。在歷史上, Western Washington University Planetarium, accessed 30 December 2008,記載喜帕恰斯發現分點歲差,雖然確實的時代和日期並不清楚,但由托勒密認為是他所做的天文觀測推測,期間在西元前147年至127年。 在19世紀的前半世紀,由於對行星之間引力計算能力的改進,人們發現黃道本身也有輕微的移動,在1863年之際這稱為行星歲差,而占主導地位的部份稱為日月歲差(lunisolar precession)。它們合起來稱為綜合歲差,並且取代了分點歲差。日月歲差是太陽和月球對地球赤道隆起的引力作用造成的,引發地軸相對於慣性空間的轉動。 行星歲差(actually an advance)是由於其它行星對地球和軌道面(黃道)的引力有小角度造成的,導致黃道面相對於慣性空間的移動。日月歲差比行星歲差強大了500倍。除了月球和太陽,其它行星也會造成地軸的運動在慣性空間中產生微小的變化,在對比時會造成對日月歲差和行星歲差的誤解,所以國際天文聯合會在2006年將主要的部分重新命名為赤道歲差,而較微弱的成份命名為黃道歲差,但是兩者的合稱仍是綜合歲差。.

新!!: 天球和歲差 (天文) · 查看更多 »

水委一

水委一(英語:Achernar)也稱為波江座α星,是波江座最明亮的恆星,也是全天空第九亮的恆星,距離地球約139光年 ,位於波江座的南端。在全天空最明亮的九顆恆星中(天狼、老人、大角、南門二、織女、五車二、參宿七、南河三與水委一),水委一是最炙熱,顏色也是最藍的一顆。.

新!!: 天球和水委一 · 查看更多 »

活动星图

一個由北京天文館制作的适用于北纬30°至45°区域的活动星图 旋轉星圖又稱活動星圖,是由兩個有著共同軸心,可調整的盤面組成,類似星圖的觀星工具。它可以調整顯示出任何日期和時間可以看見的星星,是協助如何辨認出恆星和星座的儀器。在希臘時代就有的儀器等高儀──(astrolabe),是現代星座盤的始祖。部份觀星者用來計劃一晚觀測的程序。不同地理緯度的觀測者使用的旋轉星圖也不同,例如香港使用的是北緯20度至25度的旋轉星圖,而南、北緯所用的也不同。旋轉星圖相對較便宜,且可顯示出不少的星座,又方便攜帶,所以適合入門觀星者使用。.

新!!: 天球和活动星图 · 查看更多 »

測天圖

測天圖(Uranometria)是德國天文學家約翰·拜耳出版星圖的簡短標題。測天圖於1603年在今日德國的奧格斯堡出版,完整全名:「測天圖,包含以新的方式繪製並雕刻於銅版上的所有星座的圖表。」(Uranometria: omnium asterismorum continens schemata, nova methodo delineata, aereis laminis expressa.)。測天圖是第一個繪製範圍包含整個天球的星圖Asimov, Asimov's Biographical Encyclopedia of Science and Technology 2nd Revised edition。.

新!!: 天球和測天圖 · 查看更多 »

漫射紅外線背景輻射實驗

漫射紅外線背景輻射實驗 (Diffuse Infrared Background Experiment,DIRBE)是NASA在宇宙背景探測者任務中測量天空漫射紅外線的一項實驗。DIRBE的儀器是絕對輻射計和一架口徑19公分的折疊離軸格里望遠鏡。目標是在從近紅外線到遠紅外線 (1.25至240微米) 的10個頻率波段上觀察宇宙的亮度地圖。同時,也在1.25、 2.2 和 3.5 微米測量線性偏極化。在任務期間,這套儀器每天可以取得半個天球的樣本。.

新!!: 天球和漫射紅外線背景輻射實驗 · 查看更多 »

潮汐加速

潮汐加速是行星與其衛星之間潮汐力的效應。這種“加速”通常都是負面的效應,如果衛星是在順行軌道上運行,會逐漸退行和遠離行星(衛星的角動量增加),相對的,行星的自轉也會減緩(角動量守恆)。這個過程最終會導致質量小的先潮汐鎖定,然後大的也會如此。地月系統是研究這種情況的最佳事件。 衛星軌道週期短於主星(行星)的自轉周期,或是逆行軌道的狀況,稱為潮汐減速,是一種類似的程序(衛星的角動量減少)。.

新!!: 天球和潮汐加速 · 查看更多 »

月是曆法中的一個時間單位,照理說,他的長度應該與月球繞地球公轉的自然軌道周期相當,但傳統上都是以月相變化的周期作為一個月的長度,也就是一個月(太陰月)的長度是會合月(朔望月),大約是29.53日。對出土文物符木的研究推斷,在舊石器時代的早期,人類就已經會依據月相來計算日子。迄今,會合月仍是許多曆法的基石。一年分为12个月;中国农历一年也为12个月,农历的闰年为13个月,多出的一个月称为闰月。.

新!!: 天球和月 · 查看更多 »

望遠鏡、天文台和觀測技術年表

望遠鏡、天文台和觀測技術年表.

新!!: 天球和望遠鏡、天文台和觀測技術年表 · 查看更多 »

望远镜座

望远镜座(拉丁语名称为Telescopium)是一个南天黄道带星座,面积251.51平方度,占全天面积的0.610%,在全天88个星座中,面积排行第五十七。望远镜座中亮于5.5等的恒星有17颗,最亮星为鳖一(望远座α),视星等为3.49。每年7月10日子夜望远镜座中心经过上中天。.

新!!: 天球和望远镜座 · 查看更多 »

星座

弗雷德里克·德·威特在1670年绘制的星座图 星座是指天上一群群的恒星组合。自从古代以来,人类便把三五成群的恒星与他们神话中的人物或器具联系起来,称之为“星座”。星座几乎是所有文明中确定天空方位的手段,在航海领域应用颇广。对星座的划分完全是人为的,不同的文明对于其划分和命名都不尽相同。星座一直没有统一规定的精确边界,直到1930年,國際天文學聯合會为了统一繁杂的星座划分,用精確的邊界把天空分為八十八個正式的星座,使天空多数恆星都屬於某一特定星座。這些正式的星座大多都以中世紀傳下來的古希臘傳統星座為基礎。与此相对地,有一些广泛流传但是沒有被认可为正式星座的星星的组合叫做星群,例如北斗七星(参见恒星统称列表)。 在三維的宇宙中,這些恆星其實相互間不一定有實際的關係,不過其在天球這一個球殼面上的位置相近,而其实它们之间可能相距很远。如果我们身处银河中另一太阳系,我们看到的星空将会完全不同。自古以來,人们对于恆星的排列和形狀很感興趣,並很自然地把一些位置相近的星聯繫起來組成星座。.

新!!: 天球和星座 · 查看更多 »

星座家族

星座家族是天球上在相同區域內星座集合組成的團體,這些星座家族分別以集團中最重要的星座、黃道、神話區域、天上的水族、和創造南天星座的天文學家約翰·拜耳、尼古拉斯·拉卡伊命名。總共有8個星座家族:大熊、黃道、英仙、武仙、獵戶、幻之水族、拜耳和拉卡伊。.

新!!: 天球和星座家族 · 查看更多 »

星座列表

星座現時共有88個,皆由國際天文聯合會所定義,名字多數來源於希臘神話中的人物和動物。 古代的蘇美人和希臘人(由托勒密記錄)建立了北方大部分的星座。當歐洲的探險家往南進發時,能夠看見一些以前看不到的星空,所以歐美天文學家加入新星座以填滿南面的天空。 1922年,國際天文聯合會通過了88個星座的現代名單。 在此之後,尤金‧德爾波特為每個星座繪製了精確的邊界,使得天空中的每一個點都屬於一個星座。.

新!!: 天球和星座列表 · 查看更多 »

星圖

星圖或天體圖是夜空的地圖;亦即是「星星的地圖」。 天文學家用網格來劃分,使它們更容易使用。它們被用來識別和定位恆星、星座和星系。自古以來,人類就利用星圖來導航。請注意,星圖與星表或天體目錄不同,後者適用於特定用途的天體清單或表單。不同的星圖工具還包括星盤和活動星圖。.

新!!: 天球和星圖 · 查看更多 »

星等

星等(magnitude),為天文学术语,是指星体在天空中的相对亮度。一般而言,这也指“视星等”,即为从地球上所见星体的亮度。在地球上看起来越明亮的星体,其视星等数值就越低。常见情况下人们使用可见光来衡量视星等,但在科学探测中,红外线等其它波段也有用到。不同波段探测到的星等数据会有所不同。一颗星星的星等,取决于它离地球的距离、它本身的光度(即为绝对星等)、星际尘埃遮蔽等多重因素。一般人的肉眼能够分辨的极限大约是6.5等。.

新!!: 天球和星等 · 查看更多 »

春季大弧線

春季大弧線是在天球上春季星空中想像出來的弧線,由位於大熊座上北斗七星的杓柄 3 顆亮星(玉衡、開陽、搖光)延長到在牧夫座的大角星(Arcturus)、室女座的角宿一(Spica)及烏鴉座大約HD109238之位置,這一巨大弧線就是所稱得「春季大弧線 」。.

新!!: 天球和春季大弧線 · 查看更多 »

昴宿增十二

昴宿增十二,即金牛座28(28 Tau)或金牛座BU(BU Tauri)是一个位于金牛座昴宿星团的聯星系统,距离地球约390光年。虽然昴宿增十二是一颗炙热的B型恒星,光度是太阳的190倍,但由于它在天球的位置接近更加明亮的昴宿七,观星者很难通过裸眼分辨出昴宿增十二。昴宿增十二的自转速度超过水委一,接近恒星的分裂速度。 昴宿增十二联星系统的主星昴宿增十二A是一颗拥有特别特征的Be星,两个互成角度的周期性变化气体环组成复杂星周盤环境。虽然有对这个联星系统进行研究,但目前对伴星昴宿增十二B的特征所知不多。昴宿增十二是昴宿星团第七亮的恒星,次于昴宿六、昴宿七、昴宿一、昴宿四、昴宿五和昴宿二。.

新!!: 天球和昴宿增十二 · 查看更多 »

浑象

浑象,又称浑天仪,在天文学上,是古代根据浑天说用来演示天体在天球上的运动及测量黄赤道坐标差的仪器。 公元前4世纪,周朝战国时的石申、甘德最早制作浑象。 西汉宣帝甘露二年(公元前52年),大司农耿寿昌“铸铜为象,以测天文”。 東漢賈逵、傅安等在圓儀上加上黃道環,稱為“黃道銅儀”(公元103年詔書造“黃道銅儀”)。 117年東漢天文学家張衡创製浑象,用漏壶滴出的水发动齿轮,带动浑象绕轴旋转,并使浑象的转动与地球的周日运动相等,可以将天象准确的表示出来。 早期曾有木仪,《隋志》引吴太史令陈苗的话说:“先贤制木为仪,各曰浑天。”以后多为金属铸造。 十六国的前赵刘曜光初六年(323年),史官丞南阳孔挺曾铸造铜浑仪。北魏道武帝天兴初年(398年),太史令晁崇修浑仪,用以观测星象。1至明元帝永兴四年(412年),下诏造候部铁仪。 南北朝时,到宋文帝元嘉十三年(436年),太史令钱乐之铸造了一座浑天铜仪,实际上是一座浑象,即天球仪。元嘉十七年(440年)时,钱乐之又制作了一座小浑天。它的形制,亦是“象天运,而地在其中。” 依旧是“安二十八宿中外星官备足”。宋以后的梁代亦制作过浑天象。浑天象、浑象、浑天仪等,在名称上的区分并不严格,它们都是形象化的星图。它的功能与作用都比星图多,制作亦比星图困难。 南宋史學家李心傳於《建炎以來朝野雜記》甲集卷四有以下的記載:.

新!!: 天球和浑象 · 查看更多 »

方位天文學

方位天文學是研究天體位置和運動的學問,是天文學最古老的分支之一,可以追溯到上古的時代。天體位置的觀察對宗教和占星術都非常重要,並且可以作為計時的依據。透過天體測量學可以精確測量天體在天空中的位置。 人類以肉眼在最好的環境下約可見6,000顆恆星(全天計),但在任何時間都有一半是在地平線下看不見的。現代星圖中,人類把天球劃分成88個星座並有標準的星座邊界,每一顆恆星僅能歸屬於一個星座。星座的升落與天極在航海天文上非常有用,舉例如居於北半球,可利用北極星找到北方,因為他永遠位於北天極附近。.

新!!: 天球和方位天文學 · 查看更多 »

日晷

日晷是一種由視太陽位置告知每天時間的裝置。狹義而言,它包含一個平面(盤面)和將影子投影在平面上以指示時間的晷影器(gnomon)組成。當太陽移動著劃過天際,陰影邊緣會與不同的時間線對齊,顯示出當時的時刻。晷針(style)就是在晷影器上指示時間的邊緣線;經由晷針上的節點(如果有),還可以提示日期。晷影器可以產生明顯的陰影,以讓晷針可以顯示時間。晷影器可以是一根棍棒、金屬線、或精心裝飾的雕飾。晷針必須平行於地球的自轉軸,才能整年都提供正確的時間。晷針與地平面的夾角就是其所在位置的地理緯度。 廣義而言,日晷是使用太陽的高度或方位(或兩者一起)以顯示時間的任何設備。除了提供時間的功能外,日晷也常被當成裝置藝術的一部分、文學上的隱喻和數學上學習的物件。 一般常見廉價的裝飾日晷是大批量產的,所以晷針的角度與時角是不正確的,也就不能提供正確的時間。.

新!!: 天球和日晷 · 查看更多 »

散亂流星

散亂流星也称偶发流星是不属于任何流星雨的流星。 从地球表面看上去散亂流星在天球上的轨迹似乎没有规律,在很大程度上是偶然的。散亂流星的流星体不像流星雨中的流星体那样在同一轨道上环绕太阳运转,而是在個別的轨道上运行。 S S.

新!!: 天球和散亂流星 · 查看更多 »

拱極星

拱極星,是指在天球中,其赤道座標系統的座標較觀察者所在緯度高的恆星。由於地球自轉的關係,使夜空看似也在轉動,而拱極星永遠不會落入地平圈下。 例如,在地球北極或南極的觀測者,所看見的恆星都是拱極星(因為所有天體皆圍繞天極轉動而永不落下);在赤道上的觀測者則看不見任何一顆星是拱極星,因為兩個天極皆緊貼在地平線上。在不同的地理緯度上,會使在接近天極的一部分恆星為拱極星,視乎觀測者身處之半球與緯度高低而定。 將距離天球赤道55°以上的恆星定義為拱極星,也就是在赤緯55°至90°之間天體是拱極星。換言之,拱極星是在南、北天極周圍35°以內的天體。 這些天文學家之所以會提出這種想法,是因為從他們所在位置的vantange點都在熱帶之外,多數位置在赤緯±55°─±90°之間的天體不是永不沒入地平線下,就是從不曾出現在地平線上。那些非常靠近北極的恆星所在星座(就北半球而言,例如仙后座、仙王座、大熊座和小熊座)都在這範圍內。居於北半球中緯度地區的觀星者看見這些星座終年都在地平線上,從未升起或下沉。而非常靠近南極的星座和其中的恆星,例如南十字座、船底座、和水蛇座,相對於居住在南半球中緯度地區,例如澳洲、南非、阿根廷等國的觀星者,看見這些星座終年都在地平線上。但從上述北半球的觀測者而言,這些靠近南極的星座也永不能在地平線上出現。 在一個半球的拱極星和繞著極區的星座(在天球極點35°範圍內的天體)不會在另一個半極的中緯度和高緯度地區被看見。例如,在南極附近的拱極星十字架二(南十字座α),在華中和華北地區是看不見的。同樣的,在南美洲的巴塔哥尼亞也永遠看不見在北天極附近大熊座內的北斗七星。 在北半球,所有的拱極星都繞著北極星轉動,而北極星幾乎是固定不動的永遠在北方(方位角為0°),與地平線保持著相同的高度(距離地平線的角度),並且總與觀測者所在地的地理緯度相同。.

新!!: 天球和拱極星 · 查看更多 »

拱極星座

拱極星座是一些在恆顯圈內永不沒入地平線下的星座,這些星座會隨著觀察者的緯度而有所不同,緯度愈高,拱極星座愈多。 以北半球為例,假設觀察者緯度是φ,那麼赤緯大於90°-φ天區永不沒入地平線下(在恆顯圈內),該緯度的觀察者一年四季都可看見那些星座隨地球自轉而圍繞北天極(北极星)作周日視運動。 對於北半球中緯度(40°N-50°N)而言,拱極星座有小熊座、大熊座、天龙座、仙王座、仙后座和鹿豹座。對於南半球中緯度(40°S-50°S)來說則為南极座(南天極所在)、天燕座、山案座、蝘蜓座等,由於南天極星座沒有太明亮的恆星,所以不太受注目。 對於北極地區而言,北天極在天頂,所有北天球的星座皆為拱極星座;南極地區則為南天球的星座。 G.

新!!: 天球和拱極星座 · 查看更多 »

重定向到这里:

北半天球北天北天球

传出传入
嘿!我们在Facebook上吧! »