徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

分子伴侣

指数 分子伴侣

分子伴侣(英文:Chaperone,又见称为:molecular chaperone,中文又可译为侣伴蛋白。英文单词原意是指,即负责监管、教育年轻未婚少女的行为的老年婦女。)是一类协助细胞内分子组装和协助蛋白质折叠的蛋白质。注意,分子伴侣与伴侣素(英文:Chaperonin)的区别。后者只是分子伴侣中的一种,前者還包括热休克蛋白Hsp60和Hsp10两个家族。另外,使用ATP协助蛋白质折叠只是一部分分子伴侣的功能,分子伴侣如Asf1者,能在细胞分裂过程中提升DNA解螺旋酶的活性并且将母链的组蛋白传递到子链。.

17 关系: 丝氨酸蛋白酶抑制剂中心法則亚瑟·霍里奇弗朗兹-乌尔里奇·哈特尔利文索尔佯谬砷生物化学线粒体基质线粒体基质蛋白质热休克蛋白跨膜蛋白肌萎缩性脊髓侧索硬化症腦硫脂酪氨酸激酶抑制劑蛋白質三級結構蛋白质蛋白质结构蛋白酶体

丝氨酸蛋白酶抑制剂

丝氨酸蛋白酶抑制剂(serpin)是具有相似结构蛋白质的,它是由于蛋白酶抑制活性被识别的,和在生命的各个界被发现的第一个蛋白质超家族。英文缩写丝氨酸蛋白酶抑制剂(serpin)最初被创造,是因为第一个丝氨酸蛋白酶抑制剂对胰凝乳蛋白酶样丝氨酸蛋白酶(丝氨酸蛋白酶抑制剂)将要被识别的行为。它们值得注意的是其动作的不同寻常的机制,它们不可逆地通过经历大的构象改变,扰乱其活性位点抑制它们的靶蛋白酶。与此相反,通过对于结合并阻止访问蛋白酶活性位点的蛋白酶抑制剂是更常见的机制。 由丝氨酸蛋白酶抑制剂的蛋白酶抑制控制的一系列生物过程,包括凝血和炎症,因此这些蛋白质是医学研究的目标 。对于结构生物学和蛋白质折叠研究社区,它们独特的构象变化也使它们成为研究的兴趣。构象变化机制赋予某些优点,但是它也具有缺点:丝氨酸蛋白酶抑制剂易受到突变的影响,所述突变可导致丝氨酸蛋白酶抑制剂病例如蛋白质错误折叠(Proteopathy)和形成无活性的长链聚合物。丝氨酸蛋白酶抑制剂聚合不仅减少活性抑制剂的量,而且导致聚合物的积聚,引起细胞死亡和器官衰竭。 虽然大多数丝氨酸蛋白酶抑制剂控制蛋白酶解级联,但一些具有丝氨酸蛋白酶抑制剂结构的蛋白质并不是酶抑制剂,而是执行多样化的功能,例如(例如蛋白-),运输例如激素载体蛋白(甲状腺素结合球蛋白,)和分子伴侣()。术语“丝氨酸蛋白酶抑制剂”也被用于描述这些成员,尽管它们具有非抑制功能,因为它们在进化上是相关的。.

新!!: 分子伴侣和丝氨酸蛋白酶抑制剂 · 查看更多 »

中心法則

分子生物學的中心法则(The central dogma of molecular biology,又譯分子生物學的中心教條),首先由佛朗西斯·克里克於1958年Crick, F.H.C. (1958): Symp.

新!!: 分子伴侣和中心法則 · 查看更多 »

亚瑟·霍里奇

亚瑟·霍里奇(Arthur L. Horwich,),美国生物学家,在耶鲁大学医学院工作,并且自1990年至今一直在霍华德·休斯医学研究所做研究工作。研究领域主要是蛋白质折叠和分子伴侣(chaperonin),他早于1989年就发表了这方面的论文。.

新!!: 分子伴侣和亚瑟·霍里奇 · 查看更多 »

弗朗兹-乌尔里奇·哈特尔

弗朗兹-乌尔里奇·哈特尔(Franz-Ulrich Hartl,),德国生物化学家,是的主任。他以其在蛋白质折叠领域的开创性研究而闻名。.

新!!: 分子伴侣和弗朗兹-乌尔里奇·哈特尔 · 查看更多 »

利文索尔佯谬

利文索尔佯谬(Levinthal's paradox)是一个思想实验,也是蛋白质折叠理论中的一个自指。在1969年, 美国分子生物学家Cyrus Levinthal指出,由于在未折叠的多肽链中的非常大量的自由度,该分子具有天文数量的可能构象。在一篇论文中,他估计了3 300 或10 143(通常被错误地引用为1968年的论文)。例如,一个由100个氨基酸残基组成的多肽,将具有99个肽键,并且因此具有198个不同的phi和psi键角。如果这些键角中的每一个可以是三个稳定构象之一,则蛋白质可错误折叠成最多达到3198种不同构象(包括任何可能的折叠冗余)。因此,如果蛋白质通过连续采样所有可能的构象而获得其正确折叠的构型,则需要比宇宙的年龄更长的时间以达到其正确的天然构象。即使以快速(纳秒或皮秒)速率采样构象,这也是真的。 “悖论”是大多数小蛋白质在毫秒或甚至微秒时间尺度上同时折叠。这种悖论的解决方案已经通过蛋白质结构预测的计算方法建立。 此佯谬表明蛋白质折叠遵循特异性途径,或者其过程中只尝试有限数目的构象。.

新!!: 分子伴侣和利文索尔佯谬 · 查看更多 »

砷生物化学

砷生物化学是指利用砷及其化合物(如砷酸盐)的生物化学过程。砷在地壳中丰度属中等。尽管砷的化合物毒性很强,许多生物都能产生、代谢各种无机和有机砷化物。砷和其他元素(例如硒)一样有利有弊。有些含有有毒砷化物, 可能经由生化过程影响数百万人,Elke Dopp, Andrew D. Kligerman and Roland A. Diaz-Bone Organoarsenicals.

新!!: 分子伴侣和砷生物化学 · 查看更多 »

线粒体基质

線粒體基质是線粒體中由線粒體内膜包裹的内部空间,其中充满无定形液体,含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶类。其中,苹果酸脱氢酶是线粒体基质的标志酶。线粒體基质中的某些酶系组成网状结构,与线粒體内膜内侧有一定的连接,利于上述酶促反应所形成的NADH转移至内膜的电子传递链中。除各种可溶性酶外,線粒體基质还含有线粒体自身的DNA(即线粒體DNA)和核糖体(粒線體核糖体)。 线粒體基质中每1μL的水溶解了约1.25mg的蛋白质,而细胞质基质中每1μL的水溶解了约0.26mg蛋白质,所以线粒體体基质较细胞质基质黏稠。虽然已知线粒体内膜含有可调节水分子转运的水通道蛋白,线粒体维持内膜两侧的渗透平衡的方式仍不明晰。.

新!!: 分子伴侣和线粒体基质 · 查看更多 »

线粒体基质蛋白质

线粒体基质蛋白质(mitochondrial matrix protein)是对存在于线粒体基质中的蛋白质的统称。线粒体基质中蛋白质浓度较高,但其中只有极少数是由线粒体基因组内的基因编码的,绝大多数是由核基因编码,经转录并由细胞质基质中的游离核糖体翻译产生的。这些蛋白质包括DNA聚合酶、RNA聚合酶、柠檬酸合成酶、乙醇脱氢酶(酵母菌)、鸟氨酸氨基转移酶(哺乳动物)以及三羧酸循环酶系中的酶类等。在细胞质基质中合成的线粒体基质蛋白的转运过程较为复杂,它们需要在转运肽及多种分子伴侣的辅助下经主动运输才能进入线粒体基质。线粒体基质蛋白不一定只在线粒体基质中表达,它们也可以在线粒体外表达。有猜测认为,这些存在于线粒体外的线粒体基质蛋白质是从线粒体中转运出去的,而此现象可能与线粒体起源于被真核细胞胞吞的原核细胞有关。 有研究指出,在肝脏受损后再生的初期一些线粒体基质蛋白会被释放到细胞质基质中,这一现象说明线粒体基质蛋白的释放可能与组织再生有一定的联系。.

新!!: 分子伴侣和线粒体基质蛋白质 · 查看更多 »

热休克蛋白

热休克蛋白(Heat shock proteins,又称热激蛋白,简称为HSP)是一类功能性相关蛋白质,当细胞受到升高温度或其他胁迫时它们的表达就会增长,可協助蛋白質正常摺疊。这种表达的增长是受到转录调控的。热休克蛋白大幅上调控是热休克反应的关键部分并且主要由热休克因子引导。在从细菌到人类的几乎所有生物中都发现了热休克蛋白。 热休克蛋白的命名是依据他们的分子质量。例如,Hsp60、Hsp70与Hsp90(被研究最多的热休克蛋白)指的是热休克蛋白家族的尺寸分别大约60、70与90千道尔顿。小到8千道尔顿的蛋白泛素,这种蛋白用于标记即将分解的蛋白质,也表现出热休克蛋白的性质。.

新!!: 分子伴侣和热休克蛋白 · 查看更多 »

跨膜蛋白

跨膜蛋白(transmembrane protein,TP)是一種貫穿生物膜(細胞膜)兩端的蛋白。許多跨膜蛋白的功能是作為通道或“裝載碼頭”來實施拒絕或允許某種特定的物質跨過生物膜的運輸、進入細胞,同時,也使要廢棄的副產品運出細胞。當對某種分子做出相應時,這些“負責運載”的跨膜蛋白通過特定的摺疊和彎曲方式,實現該分子的跨過生物膜的運輸。 “跨膜蛋白”是一種跨越整個生物膜一次或多次的蛋白。跨膜蛋白在水中凝聚并沉淀。大多數跨膜蛋白要用去污劑或非極性溶劑提取,少數貝塔-折筒狀蛋白也可以用某些變性劑提取。 所有的跨膜蛋白是整合膜蛋白(也叫內嵌膜蛋白),但是不是所有的整合膜蛋白都是跨膜蛋白。.

新!!: 分子伴侣和跨膜蛋白 · 查看更多 »

肌萎缩性脊髓侧索硬化症

肌萎縮性脊髓側索硬化症(Amyotrophic lateral sclerosis,縮寫為 ALS),也稱為肌萎缩侧索硬化症,也称为盧·賈里格症(Lou Gehrig's disease)、漸凍人症、运动神经元病,是一种漸進且致命的神经退行性疾病。ALS是最常見的五種運動神經元疾病(MND)之一。在英聯邦國家中,运动神经元疾病常指肌萎缩侧索硬化症。。肌萎缩侧索硬化症由中樞神經系統內控制骨骼肌的運動神經元退化所致。由於上、下運動神經元退化和死亡,肌肉逐漸衰弱、。最後,大腦完全喪失控制隨意運動的能力。最終會造成、吞嚥,以及呼吸上的障礙。這種疾病並不一定會如阿兹海默病般影響病人的高级神经活动;相反,晚期疾病病人可一直保持清晰的思维、保留發病前的記憶、人格和智力。 有90%至95%的发病原因不明。约5%至10%遗传自父母。大约有一半的病例是由两个特定基因引起的。其导致控制随意肌的神经元死亡。该病的诊断基于个人症状和体征测试,以排除其他致病的可能。 现无治疗肌萎缩侧索硬化症的方法。一种名为利鲁唑的药物可以延长大约2至3月的寿命。可以提高患者的生活--并延长寿命。肌萎缩侧索硬化症通常在60岁左右发病,但一些直系遗传病例通常在50岁左右发病。患者从发病到死亡的平均生存期为3至4年。只有10%的患者生存期超过十年,极少数生存期为50年甚至更久。大多患者死于呼吸衰竭。世界上很多地方,肌萎缩侧索硬化症的患病率还是未知的。在欧洲和美国,每年大约每十万人中就有2.2人确诊肌萎缩侧索硬化症。 有关这种疾病的描述至少可以追溯到1824年的记载。1869年,让-马丁·沙可首次提出了该病症状与潜在神经问题之间的联系。他在1874年开始使用“肌萎缩性侧索硬化症”这一术语。棒球运动员盧·賈里格及物理学家斯蒂芬·霍金罹患此病后,肌萎缩侧索硬化症才开始被人熟知。2014年冰桶挑战--在互联网上流传,提高了公众对肌萎缩侧索硬化症的认识。.

新!!: 分子伴侣和肌萎缩性脊髓侧索硬化症 · 查看更多 »

腦硫脂

腦硫脂(英語:sulfatide,硫酸腦苷脂、硫苷脂、硫脂類、半乳糖酰基鞘氨醇/3-O-sulfogalactosylceramide、SM4、硫酸化半乳糖/sulfated galactocerebroside)屬於一類,具體上是"硫酸醣脂"(sulfoglycolipid)的一類,因其含硫酸基糖脂。腦硫脂的合成主要在内质网開始而在高尔基体結束,過程中轉化成半乳糖之後硫化為腦硫脂。在髓磷脂的半乳糖脂中,有1/5是腦硫脂。腦硫脂主要被發現在由中樞神經系統的及周围神经系统中,施旺細胞所產生髓鞘细胞膜的胞膜外片上。然而,腦硫脂也存在於真核生物組織的許多細胞之细胞膜的胞膜外片上。 因為腦硫脂是一種多功能分子,它可以在多種生物學領域中使用。除了作為膜成分,腦硫脂功能作用在(靶向蛋白)、、神经可塑性、記憶及"神經膠質細胞軸突的相互作用"(glial-axon interaction)等功能上。腦硫脂也作用在一些生理過程及系統上,包括神经系统、免疫系统、胰岛素分泌、凝血、,及細菌感染等。其結果是,腦硫脂或可關聯於或也能夠結合到腎組織、癌症細胞/組織、红血球細胞及血小板的表面、免疫系統中的CD1a-d細胞、許多細菌細胞、一些病毒、髓鞘、神經元,以及星形膠質細胞等組織上。 硫脂顯出異常的代谢或改變也與各種病理病症有關包括在神經病理學(neuropathology)上,比如異染性腦白質退化症(MLD)、阿兹海默病及帕金森氏症。腦硫脂也與糖尿病,癌遠端轉移,及病毒包括HIV-1(HIV-1/Subtypes of HIV)、甲型流感病毒、丙型肝炎以及牛痘病毒(Vaccinia virus)等有關。此外,硫脂的過度顯現出與癫痫及「聽原性癲癇發作」(audiogenic seizures)以及其它神经系统裡的病理狀態有關。 過往及正在進行的研究將繼續闡明腦硫脂的多種生物學功能及其眾多的影響,且在病理学上已相關聯到腦硫脂。大多數研究利用小鼠模型,而且異源性表達(heterologous expression)系統也被利用,包括到但不限於"Madin-Darby犬腎細胞"及羰基硫-7細胞。.

新!!: 分子伴侣和腦硫脂 · 查看更多 »

酪氨酸激酶抑制劑

酪氨酸激酶抑制劑(Tyrosine kinase inhibitor,TKI)是能阻斷酪氨酸激酶的藥物。由於酪氨酸激酶在細胞內擔任許多訊號傳遞的開關,因此該酶的突變常常引起癌症;酪氨酸激酶抑制劑因此通常做為癌症藥物使用。 酪氨酸激酶抑制劑也被稱為「Tyrphostins」,也就是 「酪氨酸磷酸化抑制劑」(Tyrosine Phosphorylation Inhibitor)的縮寫,起源於一份1988年的論文。 該論文是第一篇描述抑制表皮生長因子受體(EGFR)之催化活性的文章。 該研究也是第一個透過系統性的搜尋而發現針對酪氨酸磷酸化的小分子抑制劑。該抑制劑不干擾其他磷酸化絲氨酸與蘇氨酸的蛋白激酶,也不影響其他具有類似功能的蛋白質,例如胰島素受器的磷酸化結構域。研究更發現儘管各種酪氨酸激酶的結構域都有高度的保留性(即高度相似),設計精良的藥物仍能分辨不同的蛋白質並予以抑制,例如EGFR和HER2。.

新!!: 分子伴侣和酪氨酸激酶抑制劑 · 查看更多 »

蛋白質三級結構

蛋白質三級結構(Protein tertiary structure)是在生物化學裡指蛋白質整體几何形狀,亦稱為其摺疊。蛋白質分子是一連串的胺基酸一條線地接結,基本上假定其會有一可作用其生物功能的三維結構。對蛋白質三級結構的研究稱為結構生物學。蛋白质的三级结构是由它的原子坐标定义的。这些坐标可参照或一个蛋白质结构域或整个三级结构。Branden C. and Tooze J. "Introduction to Protein Structure" Garland Publishing, New York.

新!!: 分子伴侣和蛋白質三級結構 · 查看更多 »

蛋白质

蛋白质(protein,旧称“朊”)是大型生物分子,或高分子,它由一个或多个由氨基酸残基组成的长链条组成。氨基酸分子呈线性排列,相邻氨基酸残基的羧基和氨基通过肽键连接在一起。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被改變原子的排序而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,发挥某一特定功能。 与其他生物大分子(如多糖和核酸)一样,蛋白质是地球上生物体中的必要组成成分,参与了细胞生命活动的每一个进程。酶是最常见的一类蛋白质,它们催化生物化学反应,尤其对于生物体的代谢至关重要。除了酶之外,还有许多结构性或机械性蛋白质,如肌肉中的肌动蛋白和肌球蛋白,以及细胞骨架中的微管蛋白(参与形成细胞内的支撑网络以维持细胞外形)。另外一些蛋白质则参与细胞信号传导、免疫反应、细胞黏附和细胞周期调控等。同时,蛋白质也是动物饮食中必需的营养物质,这是因为动物自身无法合成所有氨基酸,动物需要和必须从食物中获取必需氨基酸。通过消化过程将蛋白质降解为自由氨基酸,动物就可以将它们用于自身的代谢。.

新!!: 分子伴侣和蛋白质 · 查看更多 »

蛋白质结构

蛋白质结构是指蛋白质分子的空间结构。作为一类重要的生物大分子,蛋白质主要由碳、氢、氧、氮、硫等化学元素组成。所有蛋白质都是由20种不同的L型α氨基酸连接形成的多聚体,在形成蛋白质后,这些氨基酸又被称为残基。蛋白质和多肽之间的界限并不是很清晰,有人基于发挥功能性作用的结构域所需的残基数认为,若残基数少于40,就称之为多肽或肽。要发挥生物学功能,蛋白质需要正确折叠为一个特定构型,主要是通过大量的非共价相互作用(如氢键,离子键,范德华力和疏水作用)来实现;此外,在一些蛋白质(特别是分泌性蛋白质)折叠中,二硫键也起到关键作用。为了从分子水平上了解蛋白质的作用机制,常常需要测定蛋白质的三维结构。由研究蛋白质结构而发展起来了结构生物学,采用了包括X射线晶体学、核磁共振等技术来解析蛋白质结构。 一定数量的残基对于发挥某一生物化学功能是必要的;40-50个残基通常是一个功能性结构域大小的下限。蛋白质大小的范围可以从这样一个下限一直到数千个残基。目前估计的蛋白质的平均长度在不同的物种中有所区别,一般约为200-380个残基,而真核生物的蛋白质平均长度比原核生物长约55%。更大的蛋白质聚合体可以通过许多蛋白质亚基形成;如由数千个肌动蛋白分子聚合形成蛋白纤维。.

新!!: 分子伴侣和蛋白质结构 · 查看更多 »

蛋白酶体

蛋白酶体(Proteasomes)是一种巨型筒状蛋白质复合物,主要作用是通过打断肽键来实现降解细胞不需要的或受到损伤的蛋白质。 目前所有已知的真核生物和古菌皆有蛋白酶體,在一些原核生物中也存在。在真核生物中,它位于细胞核和细胞质中。能够发挥这一作用的酶被称为蛋白酶。蛋白酶体是细胞用来调控特定蛋白质的浓度和除去错误折叠蛋白质的主要机制。经过蛋白酶体的降解,蛋白质被切割为约7-8个氨基酸长的肽段;这些肽段可以被进一步降解为单个氨基酸分子,然后被用于合成新的蛋白质Lodish, H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. (2004).

新!!: 分子伴侣和蛋白酶体 · 查看更多 »

重定向到这里:

侣伴蛋白

传出传入
嘿!我们在Facebook上吧! »