徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

二磷酸腺苷

指数 二磷酸腺苷

二磷酸腺苷(adenosine diphosphate,縮寫:ADP)是一種核苷酸。它是在代謝中重要的有機化合物,並是在活細胞中的能量流動是至關重要的。一個ADP分子包括三個重要的結構組件:一個糖骨架連接到一個腺嘌呤分子和鍵合到核糖的5'碳原子上的兩個磷酸盐(phosphate)基團的分子。.

48 关系: ATP-柠檬酸裂解酶ATP酶厭氧生物吡哆醛激酶外切體複合物尿素循环己糖激酶三磷酸腺苷三磷酸腺苷合酶丙酮酸激酶二磷酸腺苷核糖底物水平磷酸化代谢异化作用嘌呤受体單磷酸腺苷呼吸作用回光返照砷生物化学磷酸鹽磷酸果糖激酶1糖酵解糖酵解振子线粒体膜间隙细胞迁移生物化学常见缩写列表生物分子列表焦磷酸盐鎂營養血小板血小板因子胆固醇生物合成葡萄糖肌动蛋白肌小節肌酸脫氧腺苷二磷酸腺苷酒精發酵電子傳遞鏈核黄素激酶核苷酸氟代脱氧葡萄糖氧化磷酸化氨甲酰磷酸合成酶3-磷酸甘油酸58-64-0

ATP-柠檬酸裂解酶

ATP-柠檬酸裂解酶(ATP citrate lyase,又直接简称柠檬酸裂解酶)是脂肪酸生物合成中催化重要步骤的一个酶。该步在脂肪酸合成中发生,是因为ATP-柠檬酸裂解酶是糖代谢(产能)与产生脂肪酸之间的桥梁。.

新!!: 二磷酸腺苷和ATP-柠檬酸裂解酶 · 查看更多 »

ATP酶

ATP酶,又称为三磷酸腺苷酶,是一类能将三磷酸腺苷(ATP)催化水解为二磷酸腺苷(ADP)和磷酸根离子的酶,这是一个释放能量的反应。在大多数情况下,能量可以通过传递而被用于驱动另一个需要能量的化学反应。这一过程被所有已知的生命形式广泛利用。 部分ATP酶是内在膜蛋白(Integral membrane protein),可以锚定在生物膜上,并可以在膜上移动;这些ATP酶又被称为跨膜ATP酶。.

新!!: 二磷酸腺苷和ATP酶 · 查看更多 »

厭氧生物

厭氧生物,或稱厭氣生物,是指一種不需要氧氣生長的生物。牠們大致上可以分為三種,即專性厭氧生物、兼性厭氧生物及耐氧厭氧生物 。人體內的厭氧生物多存在於消化系統中,有些種類的厭氧細菌會產生毒素。 厭氧生物可以是單細胞的(例如原生生物和細菌),但也可以是多細胞的(例如一些多毛綱生物)。.

新!!: 二磷酸腺苷和厭氧生物 · 查看更多 »

吡哆醛激酶

吡哆醛激酶(pyridoxal kinase;)在酶学中是一个催化如下化学反应的酶: 因此,此酶的两个底物分别是ATP与吡哆醛,而它的两个产物则是ADP与吡哆醛5'-磷酸。 此酶属于转移酶家族,特异性地转移含磷基团(磷酸转移酶)并并以醇基作为受体。此酶类的系统命名为ATP:吡哆醛5'-磷酸转移酶。通常使用的其他名称包括吡哆醛激酶(磷酸化)、吡哆醛5-磷酸激酶、吡哆醛磷酸激酶以及吡哆醇激酶。此酶参与维生素B6代谢。.

新!!: 二磷酸腺苷和吡哆醛激酶 · 查看更多 »

外切體複合物

外切体复合物(exosome complex,或PM/Scl complex,上下文意思清楚时,可以直接称為exosome)简称外切酶体、外切体,是一种蛋白质复合物,能够降解各种不同的核糖核酸。由于复合物表现为核糖核酸外切酶活性,所以被命名为外切体。外切体复合物只存在于真核细胞和古菌中;而细菌中则对应有组成和结构更为简单的“降解体”复合物来发挥类似的功能。 外切体的核心是一个由六个亚基组成的环状结构,外围的亚基都结合在这一环状结构上。在真核细胞中,这一核心存在于细胞质和细胞核(特别是核仁)等细胞区室中;在不同的区室中,与之结合的蛋白质也不尽相同,从而可以调控外切体的活性以特异性地降解特定区室的RNA底物。外切体的底物包括信使RNA(mRNA)、核糖体RNA(rRNA)以及多种非编码RNA。外切体具有核糖核酸外切酶功能,也就意味着它可以从RNA的一端(3'端)开始降解作用,而不是从特定位点开始剪切RNA。 虽然没有已知疾病与外切体直接相关,但复合物中的多个蛋白亚基是一些特定自身免疫性疾病(特别是“硬化性肌炎”(Scleromyositis))病人自身抗体的靶标,也是治疗癌症的一些抗代谢化学疗法(能够阻断外切体的活性)的靶标。.

新!!: 二磷酸腺苷和外切體複合物 · 查看更多 »

尿素循环

尿素循环(Urea cycle),也称鸟氨酸循环(Ornithine cycle)是许多哺乳类动物的一个生物化学反应过程,由氨()生成尿素()。尿素循环将高毒性氨转化为尿素排泄。这是人们第一个发现的代谢循环(汉斯·克雷布斯(Hans Krebs)和Kurt Henseleit于1932年发现),比三羧酸循环的发现还早五年。 尿素循环学说是1932年,由汉斯·阿道夫·克雷布斯等人通过鼠肝切片体外试验结果提出的。後來为赖特纳等人的完善。 在哺乳动物中,尿素循环主要发生在肝脏中,而小範圍发生在肾脏中。但在鸟类和陆生蜥蜴中,转换得出的产物却是尿酸。鱼类并不需要转换氨,它们的身体直接与水接触,通过简单的扩散即可实现氨的清除。 尿素的生成场所是肝细胞(Hepatocyte)。循环一部分发生在线粒体內,另一部分发生在細胞質内,因此过程中需要转运。.

新!!: 二磷酸腺苷和尿素循环 · 查看更多 »

己糖激酶

己糖激酶(Hexokinase;又称六碳糖激酶)是生物體內的重要酵素,功能是參與D-己糖(例如D-葡萄糖、D-果糖、D-甘露糖)磷酸化產生D-己糖-6-磷酸的過程,這個過程會消耗一個ATP,並使其轉變成ADP。.

新!!: 二磷酸腺苷和己糖激酶 · 查看更多 »

三磷酸腺苷

三磷酸腺苷(adenosine triphosphate, ATP;也称作腺苷三磷酸、腺嘌呤核苷三磷酸)在生物化學中是一种核苷酸,作为細胞内能量传递的“分子通货”,储存和传递化学能。ATP在核酸合成中也具有重要作用。它也是RNA序列中的鳥嘌呤二核苷酸,在DNA進行轉錄或複製時可做為替補。.

新!!: 二磷酸腺苷和三磷酸腺苷 · 查看更多 »

三磷酸腺苷合酶

三磷酸腺苷合酶或ATP合酶,三磷酸腺苷酶(ATPase)的一种,在这里并特指F类的FoF1ATP合酶(F Type FoF1 ATP Synthase)。它利用呼吸链产生的质子的电化学势能,通过改变蛋白质的结构来进行三磷酸腺苷(ATP)的合成。ATP是大多数生物体中细胞最常用的“能量通货”。 它由二磷酸腺苷(ADP)和无机磷酸盐(Pi)形成。 ATP合酶催化的总体反应为:.

新!!: 二磷酸腺苷和三磷酸腺苷合酶 · 查看更多 »

丙酮酸激酶

丙酮酸激酶(Pyruvate kinase,)是糖酵解过程中的一类酶,催化磷酸基团从磷酸烯醇式丙酮酸(PEP)转移到ADP的反应,生成一分子丙酮酸和一分子ATP.

新!!: 二磷酸腺苷和丙酮酸激酶 · 查看更多 »

二磷酸腺苷核糖

二磷酸腺苷核糖(Adenosine diphosphate ribose,或ADP-ribose)是一个由ADP的另一个磷酸基团再与核糖结合而形成的分子,可结合并激活TRPM2离子通道。.

新!!: 二磷酸腺苷和二磷酸腺苷核糖 · 查看更多 »

底物水平磷酸化

底物水平磷酸化(substrate-level phosphorylation--是指一类ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程。 除了发生在糖酵解和三羧酸循环之中的底物水平磷酸化之外,制造腺苷三磷酸的另一条路径是氧化磷酸化作用,这一作用发生在细胞呼吸的过程之中。在氧化磷酸化期间,还原型烟酰胺腺嘌呤二核苷酸被氧化为氧化型烟酰胺腺嘌呤二核苷酸,生成2.5分子的腺苷三磷酸,而还原黄素腺嘌呤二核苷酸被氧化时则生成1.5分子的腺苷三磷酸。氧化磷酸化利用跨线粒体膜的电化学或化学渗透质子梯度以生产腺苷三磷酸,这点是与底物水平磷酸化之间最大的不同。 不像氧化磷酸化,氧化与磷酸化这两个过程在底物水平磷酸化过程中并未联系在一起,尽管这两种磷酸化都会使得腺苷三磷酸生成并且在分解代谢的氧化过程中常会得到活性中间体。然而通常情况下多数的腺苷三磷酸是在有氧或无氧呼吸的氧化磷酸化过程中形成的。底物水平磷酸化充当腺苷三磷酸的快速来源,而不依赖额外的电子受体以及呼吸作用。这种情况例如人类红细胞,其中没有线粒体,或是缺氧状态下的肌肉细胞。底物水平磷酸化的主要部分发生在细胞质中,为糖酵解的一部分;以及在有氧与无氧环境中的线粒体中,为三羧酸循环的一部分。 在糖酵解的放能阶段,底物水平磷酸化生成了四分子的腺苷三磷酸:其中两分子是在1,3-二磷酸甘油酸转变为3-磷酸甘油酸的过程中被磷酸甘油酸激酶将磷酸基转到腺苷二磷酸上的;另外两分子是在磷酸烯醇式丙酮酸转变为丙酮酸的过程中被丙酮酸激酶将磷酸基转到腺苷二磷酸上的。第一步是在3-磷酸甘油醛与一分子的无机磷酸被磷酸甘油醛脱氢酶转变为1,3-二磷酸甘油酸之后发生的。在接下来独立的步骤(区别于氧化磷酸化的重要步骤)中,通过磷酸甘油酸激酶的作用,将1,3-二磷酸甘油酸分子上的高能磷酸基团转移到腺苷二磷酸上,生成3-磷酸甘油酸。因为腺苷三磷酸从无机磷酸基团中生成出来,此步骤导致了糖酵解过程中的能量收获。第二个底物水平磷酸化在之后发生:在丙酮酸激酶的作用下通过磷酸烯醇式丙酮酸(PEP)反应而生成丙酮酸。此反应重新生成了在糖酵解准备阶段用于将葡萄糖活化为葡萄糖-6-磷酸以及将果糖-6-磷酸活化为果糖-1,6-二磷酸而耗去的腺苷三磷酸。 一旦糖酵解的产物丙酮酸进入线粒体基质,丙酮酸就被转变为乙酸酯并结合到辅酶A上以生成乙酰辅酶A并进入三羧酸循环。然而三羧酸循环是需氧呼吸,底物水平磷酸化的另一个例子就发生在琥珀酰辅酶A转换为琥珀酸时,鸟苷二磷酸通过被转上一个磷酸基团而生成了鸟苷三磷酸(GTP)。此磷酸基团在另一个底物水平磷酸化事件中被转移到腺苷二磷酸上。催化此反应的酶是琥珀酰辅酶A合成酶。 另一种形式的底物水平磷酸化见于工作中的骨骼肌与大脑之中。磷酸肌酸作为一种便利现成的补充物被储存起来,肌酸磷酸激酶将磷酸基团从磷酸肌酸转移到腺苷二磷酸上而生成腺苷三磷酸。接着腺苷三磷酸释放所汇存的化学能。 除此之外,底物水平磷酸化亦在发酵过程中见得到,例如异质乳酸发酵、丁酸发酵与丙酸发酵等。 Category:细胞呼吸.

新!!: 二磷酸腺苷和底物水平磷酸化 · 查看更多 »

代谢

代谢是生物体维持生命的化学反应总称。这些反应使得生物体能够生长和繁殖、保持它们的结构以及对环境作出反应。代谢通常被分为两类:分解代谢可以对大的分子进行分解以获得能量(如细胞呼吸);合成代谢则可以利用能量来合成细胞中的各个组分,如蛋白质和核酸等。代谢是生物体不断进行物质和能量的交换过程,一旦物质和能量交换停止,生物体的生命就會結束。 代谢中的化学反应可以归纳为代謝途徑,通过一系列酶的作用将一种化学物质转化为另一种化学物质。酶对于代谢反應来说是非常重要的,因为酶可以通过一個熱力學上易於發生的反應來驅動另一個難以進行的反應,使之變得可行;例如,利用ATP的水解所产生的能量来驱动其他化学反应。一个生物体的代谢机制决定了哪些物质对于此生物体是有营养的,而哪些是有毒的。例如,一些原核生物利用硫化氢作为营养物质,但这种气体对于动物来说却是致命的。代谢速度,或者说代谢率,也影响了一个生物体对于食物的需求量。 代谢有一個特点:無論是任何大小的物种,基本代谢途径也是相似的。例如,羧酸,作为柠檬酸循环(又称为“三羧酸循环”)中的最为人们所知的中间产物,存在于所有的生物体,无论是微小的单细胞的细菌还是巨大的多细胞生物如大象。代谢中所存在的这样的相似性很可能是由于相关代谢途径的高效率以及这些途径在进化史早期就出现而形成的结果。.

新!!: 二磷酸腺苷和代谢 · 查看更多 »

异化作用

异化作用(Catabolism)是生物的新陈代谢途径,将分子分解成更小的单位,并被氧化释放能量的过程,或用于其他合成代谢反应释放能量的过程。 异化作用将大分子(例如多糖、脂类、核酸和蛋白质)分解成更小的单元(例如分别为单糖、脂肪酸、核苷酸和氨基酸)。 细胞使用从分解聚合物释放的单体来构建新的聚合物分子,或进一步将单体降解为简单的废物产物,释放能量。 细胞废物包括乳酸、乙酸、二氧化碳、氨和尿素。 呼吸作用是异化作用中重要的过程。根据生物的呼吸作用是否需要氧气,可将生物分为需氧生物、厌氧生物和兼性生物。 异化作用的实质是生物体内的大分子,包括蛋白质、脂类和糖类被氧化并在氧化过程中放出能量。能量中的部分为ADP转化为ATP的反应吸收,并由ATP作为储能物质供其他需要。 有氧的异化作用中,糖、脂类、蛋白质等变为含羧基的化合物并进行了脱羧的酶促反应,生成二氧化碳;而氢则由脱氢酶激活在线粒体内经过呼吸链的传递将底物还原逐步释放能量,自身被氧化生成水。 无氧的异化作用缺乏氧这一氧化剂,不能完全将大分子分解,释放出其中的能量。.

新!!: 二磷酸腺苷和异化作用 · 查看更多 »

嘌呤受体

嘌呤受體(Purinergic receptors)為一類近來才被標定的膜分子家族,與細胞內許多功能及作用有關,如血管反應力(vascular reactivity)、細胞凋亡(apoptosis)及細胞素分泌 (cytikine secretion)。 對於胞外微作用的影響了解仍有限。 就目前所知它們能夠認出胞外ATP,媒介ATP作為細胞第一傳訊者。 纖維母細胞(Fibroblasts)與平滑肌細胞的有許多共同特徵, 它們都能形成動脈粥狀硬化的斑塊。人類纖維母細胞中,這種受體對影響ATP媒介的高葡萄糖濃度反應。 Category:细胞.

新!!: 二磷酸腺苷和嘌呤受体 · 查看更多 »

單磷酸腺苷

一磷酸腺苷(英文:Adenosine monophosphate,簡稱AMP),又名5'-腺嘌呤核苷酸或腺苷酸,是一種在核糖核酸(RNA)中發現的核苷酸。它是一種磷酸及核苷腺苷的酯,並由磷酸鹽官能團、戊糖核酸糖及鹼基腺嘌呤所組成。.

新!!: 二磷酸腺苷和單磷酸腺苷 · 查看更多 »

呼吸作用

呼吸作用,又称為细胞呼吸(Cellular respiration),是生物体细胞把有机物氧化分解並转化能量的化學过程,也稱為釋放作用。无论是否自养,细胞内完成生命活动所需的能量,都是来自呼吸作用。真核細胞中,粒線體是與呼吸作用最有關聯的胞器,呼吸作用的幾個關鍵性步驟都在其中進行。 呼吸作用是一種酶促氧化反应。雖名為氧化反應,不論有否氧气参与,都可称作呼吸作用(這是因為在化學上,有電子轉移的反應過程,皆可稱為氧化)。有氧气参与時的呼吸作用,稱之為有氧呼吸;没氧气参与的反應,則称为无氧呼吸。 呼吸作用的目的,是透過釋放食物裡之能量,以製造三磷酸腺苷,即細胞最主要的直接能量供應者。呼吸作用的氢與氧的燃燒,但兩者間最大分別是:呼吸作用透過一連串的反應步驟,一般的一次性釋放。在呼吸作用中,三大营养物质:碳水化合物、蛋白质和脂質的基本组成单位──葡萄糖、氨基酸和脂肪酸,被分解成更小的分子,透過數個步驟,将能量转移到还原性氢(化合价为0的氢)中。最後經過一連串的電子傳遞鏈,氢被氧化生成水;原本貯存在其中的能量,則转移到ATP分子上,供生命活动使用。.

新!!: 二磷酸腺苷和呼吸作用 · 查看更多 »

回光返照

回光返照(英文:Terminal lucidity),指晚期危重病人临终前出现反常的短暂好转现象。其具体表现通常为昏迷多时的病人突然清醒,恢复食欲,能进行简短交谈,甚至重获行动能力等。但在其后数天或数小时内情形便迅速恶化,离开人世。 关于该现象的科学解释,一般认为是人体调动免疫和内分泌系统对疾病进行最后抵抗所致。其反应包括大量ATP在短时间内水解为ADP为机体供能,同时下丘脑和垂体促使肾上腺皮质立即分泌大量的肾上腺素和皮质激素,激活交感神经兴奋点,使病人回复相对正常的心肌收缩频率,血液循环加快,大脑、心脏、肺、肝、肾等器官因供血突然趋于正常。 该现象常见于精神疾病、肿瘤、中风、脑膜炎和阿兹海默症等晚期患者群中。.

新!!: 二磷酸腺苷和回光返照 · 查看更多 »

砷生物化学

砷生物化学是指利用砷及其化合物(如砷酸盐)的生物化学过程。砷在地壳中丰度属中等。尽管砷的化合物毒性很强,许多生物都能产生、代谢各种无机和有机砷化物。砷和其他元素(例如硒)一样有利有弊。有些含有有毒砷化物, 可能经由生化过程影响数百万人,Elke Dopp, Andrew D. Kligerman and Roland A. Diaz-Bone Organoarsenicals.

新!!: 二磷酸腺苷和砷生物化学 · 查看更多 »

磷酸鹽

磷酸鹽(phosphate,符号:),是磷酸的鹽,在無機化學、生物化學及生物地質化學上是很重要的物質。.

新!!: 二磷酸腺苷和磷酸鹽 · 查看更多 »

磷酸果糖激酶1

磷酸果糖激酶1(Phosphofructokinase-1;PFK-1;)是一種糖解作用裡一種重要的酶,是一種由4個次單位組成的異位(allosteric)酵素,可受多種活化劑與抑制劑調控。在糖解作用裡,PFK-1是負責將果糖-6-磷酸與ATP轉變成為果糖-1,6-雙磷酸與ADP。.

新!!: 二磷酸腺苷和磷酸果糖激酶1 · 查看更多 »

糖酵解

糖酵解(glycolysis--是把葡萄糖(C6H12O6)转化成丙酮酸(CH3COCOO− + H+)的代谢途径。在这个过程中所释放的自由能被用于形成高能量化合物ATP和NADH。 糖解作用是所有生物细胞糖代谢過程的第一步。糖解作用是一个有10个步骤酶促反应的确定序列。在该过程中,一分子葡萄糖会经过十步酶促反应转变成两分子丙酮酸(严格来说,应该是丙酮酸盐,即是丙酮酸的阴离子形式)。 糖解作用及其各种变化形式发生在几乎所有的生物中,无论是有氧和厌氧。糖酵解的广泛发生显示它是最古老的已知的代谢途径之一。事实上,糖解作用及其并行途径戊糖磷酸途径,构成了反应,这些反应发生在还在不存在酶的条件下进行金属催化的太古宙海洋。糖解作用可能因此源于生命出现之前世界的化学约束。 糖解作用发生在大多数生物体中的细胞的胞质溶胶。最常见的和研究最彻底的糖解作用形式是双磷酸己糖降解途径(Embden-Meyerhof-Parnas途径,简称:EMP途径),这是被Gustav Embden,奥托·迈尔霍夫,和Jakub Karol Parnas所发现的。糖解作用也指的其他途径,例如,脱氧酮糖酸途径()各种异型的和同型的发酵途径,糖解作用一词可以用来概括所有这些途径。但是,在此处的讨论却是局限于双磷酸己糖降解途径(EMP途径)。 整个糖解作用途径可以分成两个阶段:.

新!!: 二磷酸腺苷和糖酵解 · 查看更多 »

糖酵解振子

糖酵解振子(glycolytic oscillator)又称塞尔科夫糖酵解模型是生物化学家塞尔科夫1968年模拟糖酵解的振动现象的非线性微分方程组 \frac.

新!!: 二磷酸腺苷和糖酵解振子 · 查看更多 »

线粒体膜间隙

线粒体膜间隙(Intermembrane space of mitochondria)也称为“线粒体膜间间隙”,是线粒体外膜与线粒体内膜之间的空隙,宽约6-8nm,其中充满无定形液体。由于线粒体外膜含有孔蛋白,通透性较高,而线粒体内膜通透性较低,所以线粒体膜间隙内容物的组成与细胞质基质十分接近,含有众多生化反应底物、可溶性的酶和辅助因子等。由于蛋白质不能穿过孔蛋白,所以它们必须以一段特定的信号序列以供识别并转运进膜间隙,细胞色素''c''正是以这种方式进入膜间隙的。线粒体膜间隙中还含有比细胞质基质中浓度更高的腺苷酸激酶、单磷酸激酶和二磷酸激酶等激酶,其中腺苷酸激酶是线粒体膜间隙的标志酶,它可以催化膜间隙中三磷酸腺苷(adenosine triphosphate,简称“ATP”)分子末端的磷酸基团转移到单磷酸腺苷(adenosine monophosphate,简称“AMP”)分子上,生成两分子的二磷酸腺苷 (adenosine diphosphate,简称“ADP”)。 线粒体膜间隙中存在的蛋白质称为“线粒体膜间隙蛋白质”,这些蛋白质全部在细胞质基质中合成。有研究指出,线粒体膜间隙蛋白质在诱导癌细胞凋亡中具有重要作用。.

新!!: 二磷酸腺苷和线粒体膜间隙 · 查看更多 »

细胞迁移

细胞迁移,与细胞移动同义,与细胞运动義近,指的是细胞在接收到迁移信号或感受到某些物质的浓度梯度后而产生的移动。移動过程中,细胞不断重复着向前方伸出突觸/偽足,然后牵拉後方胞体的循环过程。细胞骨架和其结合蛋白,還有細胞間質是这個过程的物质基础,另外还有多种物质會对之进行精密调节。 若以移動方式與型態來比較,细胞迁移是通过胞体形变进行的定向移动,这有别于其他;如细胞靠鞭毛与纤毛的运动、或是细胞随血流而发生的位置变化,而且就移動速度來看,相比起后两者,细胞迁移要慢得多。舉例而言:成纤维细胞的移动速度为1微米每分,若以精子的平均游動速度56.44微米/每秒,即3384微米/每分來比較,兩者差距約3000倍以上。角膜细胞即使比成纤维细胞快上十倍,但是要完成从不来梅到汉堡这93公--的路程仍需要17123年。而且细胞用力甚轻。成纤维细胞胞体收缩的力只有2×10−7牛顿,而角膜细胞的则是2×10−8牛顿(一牛顿约为人用手举起一鸡蛋所用的力道)。 但此等「步缓力微」的細胞遷移,却是细胞觅食、傷口痊癒、胚胎發生、免疫反應、感染和癌症转移等等生理现象所涉及到的。因此细胞迁移是目前细胞生物学研究的一个主要課題,科学家們试图通过对细胞迁移的研究,在阻止癌症转移、異體植皮等医学应用方面取得更大成果。也因為細胞遷移獨有的运动特性,成為今生物学熱門研究方向。.

新!!: 二磷酸腺苷和细胞迁移 · 查看更多 »

生物化学常见缩写列表

没有描述。

新!!: 二磷酸腺苷和生物化学常见缩写列表 · 查看更多 »

生物分子列表

生物分子列表收录了部分有对应维基百科条目的生物分子,以中文全称拼音首字母排序:.

新!!: 二磷酸腺苷和生物分子列表 · 查看更多 »

焦磷酸盐

磷酸盐(英文:Pyrophosphate)是焦磷酸的盐。焦磷酸盐又称二磷酸盐或双磷酸盐。在食品添加剂中,焦磷酸盐的代号是E450。除了正盐以外,也有一些焦磷酸的酸式盐存在,比如Na2H2P2O7。.

新!!: 二磷酸腺苷和焦磷酸盐 · 查看更多 »

鎂營養

鎂是人體必須的宏量礦物質營養素,現代的食品多經加工再造,容易導致鎂離子流失,容易發生攝取不足的問題,可能增加糖尿病等慢性疾病的風險。.

新!!: 二磷酸腺苷和鎂營養 · 查看更多 »

血小板

血小板()——又名血栓细胞()——是从巨核细胞上脱落的细胞质小块,具有止血作用。.

新!!: 二磷酸腺苷和血小板 · 查看更多 »

血小板因子

血小板因子(platelet factor,PF),即血小板本身所含有的特異性物質。現已知有10餘種,血管受損時,血小板與膠原組織接觸發生黏附、聚積,血小板破裂,釋放出PF,從而參與凝血和止血過程。.

新!!: 二磷酸腺苷和血小板因子 · 查看更多 »

胆固醇生物合成

胆固醇是真核生物细胞膜的组分,也是多种生物活性物质的前体,因此它的生物合成和代谢转变以及转运一直是生物学家关注焦点之一。其过程大致为:乙酰CoA→甲羟戊酸→二甲烯丙基焦磷酸→鲨烯→胆固醇。 哺乳动物几乎所有细胞都能合成胆固醇,其中最活跃的是肝细胞(80%),其次是小肠上皮细胞(10%)和皮肤(5%)。细胞内合成胆固醇的场所是细胞质,其中一部分反应在细胞液发生,另一部分则在内质网上进行。.

新!!: 二磷酸腺苷和胆固醇生物合成 · 查看更多 »

葡萄糖

葡萄糖(法语、德语、英語:glucose;又称血糖、玉米葡糖、玉蜀黍糖)是自然界分布最广、且最为重要的一種单糖。 因為擁有6個碳原子,被歸為己糖或六碳糖。葡萄糖是一种多羟基醛,分子式為C6H12O6。其水溶液旋光向右,故亦称“右旋糖”。葡萄糖在生物学领域具有重要地位,是活細胞的能量來源和新陳代謝的中间产物。植物可通过行光合作用產生葡萄糖。.

新!!: 二磷酸腺苷和葡萄糖 · 查看更多 »

肌动蛋白

肌动蛋白(actin)是一类分子量大约在42,000的球状蛋白质。除了线虫类精子细胞,在所有的真核细胞当中均发现有该蛋白质,浓度约在100μM以上。肌动蛋白是生物体中微丝的两个单体亚基之一,而微丝则是细胞骨架三大组成结构之一,肌动蛋白还构成了肌细胞中具有收缩功能的组织。所以,肌动蛋白对于细胞活动起到很大的作用,比如肌肉的收缩,细胞的转移、分裂和原质的流动,动物胞囊和器官的运动,细胞间信息的传递,以及细胞的形状和连结的建立和维持等等。 有许多疾病是由调控肌动蛋白基因表达活性的蛋白及其相关蛋白的等位基因突变引起的。肌动蛋白基因表达也是一些病原微生物感染过程中的关键因素。一些肌动蛋白调孔蛋白的突变会导致,包括心脏大小与功能的变化以及耳聋等。细胞骨架的组装也与细胞内细菌与病毒的致病性有关,特别是在逃避免疫系统作用有关的过程中。.

新!!: 二磷酸腺苷和肌动蛋白 · 查看更多 »

肌小節

肌小节(sarcomere,即肌节、肌原纤维节)是的基本单位。肌节由三种不同肌丝系统组成。.

新!!: 二磷酸腺苷和肌小節 · 查看更多 »

肌酸

肌酸(creatine),在生物化学中,是一种自然存在于脊椎动物体内的一种含氮的有机酸,能够辅助为肌肉和神经细胞提供能量。米歇尔·欧仁·谢弗勒尔于1832年首次在骨骼肌中发现肌酸,而后,根据希腊语「κρέας」(kreas,肉),命名为“creatine”。.

新!!: 二磷酸腺苷和肌酸 · 查看更多 »

脫氧腺苷二磷酸

去氧腺苷二磷酸(Deoxyadenosine diphosphate,dADP)是一種與腺苷二磷酸相似的核苷酸,在五碳糖2號碳上的-OH基被氫原子取代。含有兩個磷酸根、一個鹼基腺嘌呤,以及五碳糖。.

新!!: 二磷酸腺苷和脫氧腺苷二磷酸 · 查看更多 »

腺苷

腺苷(Adenosine)是核苷的一種,由核糖(呋喃核糖)與腺嘌呤的一部分組成,中間由β-N9-配糖鍵(β-N9-glycosidic bond)連結。 腺苷在生物化學上扮演重要角色,包括以腺苷三磷酸(ATP)或腺苷雙磷酸(ADP)形式轉移能量,或是以環狀腺苷單磷酸(cAMP)進行信號傳遞等。此外腺苷也是一種抑制性神經傳導物(inhibitory neurotransmitter),可能會促進睡眠。.

新!!: 二磷酸腺苷和腺苷 · 查看更多 »

酒精發酵

酒精发酵是指微生物通过发酵过程产出酒精的化学过程。酵母以及其它微生物经过发酵作用,反应物中的糖,如葡萄糖、果糖和蔗糖转化成能量、乙醇和二氧化碳,但根据反应物的不同,微生物发酵的具体过程各异。由于该过程大多在缺氧条件下完成,酒精发酵一般被认为是厌氧过程。酒精发酵被广泛地应用于酒精饮料、燃料、食品加工等方面。.

新!!: 二磷酸腺苷和酒精發酵 · 查看更多 »

電子傳遞鏈

電子傳遞鏈又稱呼吸鏈,是氧化磷酸化的一部分,位于原核生物細胞膜或者真核生物的粒線體内膜上,葉綠體在類囊體膜上所進行的進行光合磷酸化過程,高能電子在膜上一系列蛋白傳送的過程,藉由膜蛋白的氧化與還原將其能量逐漸釋放出來,造成膜外與膜內質子濃度的差異(proton-gradient),而這些質子再由高濃度往低濃度運送,及一對質子(H+離子)的轉移這電子轉移穿膜,這產生的電化學質子濃度的差異驅動ATP合成,或形成化學能三磷酸腺苷(ATP)的產生。電子在電子傳遞鏈中的最終受體是氧分子。 電子傳遞鏈通過氧化還原反應,從陽光在光合作用中,或者如在醣類,細胞呼吸氧化的情況下獲取能量。在真核生物中,一個重要的電子傳遞鏈在線粒體內膜發現,通過使用ATP合成酶作氧化磷酸化反應。還發現在有光合作用的真核生物葉綠體的類囊體膜上。在細菌中電子傳輸鏈位於其細胞膜上。 在葉綠體中,光驅動水轉化為氧,並藉由傳遞H+離子跨越葉綠體膜轉化NADP+成NADPH。在粒線體中,則是將氧轉化成水,NADH至NAD+和琥珀酸鹽至富馬酸鹽建立質子梯度。 包括了四個膜蛋白複合物和脂溶性電子載體,用於將還原電勢轉化爲跨膜的質子梯度。.

新!!: 二磷酸腺苷和電子傳遞鏈 · 查看更多 »

核黄素激酶

核黄素激酶(riboflavin kinase,)是一个催化以下化学反应的酶: 该酶催化的反应的底物为ATP和核黄素,产物是ADP和黄素单核苷酸(FMN)。 但是,在古菌核黄素激酶()中,常使用CTP而非ATP作为反应底物,催化如下反应: 核黄素激酶也在许多细菌中发现,具有类似的功能,但存在若干数量的氨基酸不同。.

新!!: 二磷酸腺苷和核黄素激酶 · 查看更多 »

核苷酸

核苷酸(Nucleotide)为核酸的基本组成单位。核苷酸由一個含氮鹼基作為核心,加上一個五碳糖和一個或者多个磷酸基團組成。含氮碱基有五种可能,分别是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶。五碳糖为脱氧核糖者称为脱氧核糖核苷酸(DNA的單體),五碳糖为核糖者称为核糖核苷酸(RNA的單體)。 根据构成核酸的核苷酸数量分为寡核苷酸(少于或等于15个核苷酸)和多核苷酸(15个核苷酸以上)。.

新!!: 二磷酸腺苷和核苷酸 · 查看更多 »

氟代脱氧葡萄糖

氟代脱氧葡萄糖是2-脱氧葡萄糖的氟代衍生物。其完整的化学名称为2-氟-2-脱氧-D-葡萄糖,通常简称为18F-FDG或FDG。FDG最常用于正电子发射断层扫描(PET)类的医学成像设备:FDG分子之中的氟选用的是属于正电子发射型放射性同位素的氟-18(fluorine-18,F-18,18F,18氟),从而成为18F-FDG(氟-脱氧葡糖)。在向病人(患者,病患)体内注射FDG之后,PET扫描仪可以构建出反映FDG体内分布情况的图像。接着,核医学医师或放射医师对这些图像加以评估,从而作出关于各种医学健康状况的诊断。.

新!!: 二磷酸腺苷和氟代脱氧葡萄糖 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

新!!: 二磷酸腺苷和氧 · 查看更多 »

氧化磷酸化

氧化磷酸化(oxidative phosphorylation,縮寫作 OXPHOS)是细胞的一种代谢途径,该过程在真核生物的线粒体内膜或原核生物的细胞膜上发生,使用其中的酶及氧化各类营养素所释放的能量来合成三磷酸腺苷(ATP)。虽然地球上的生物消耗的能源物质范围极广,为合成代谢直接提供能量的分子却几乎都是ATP。几乎所有的好氧性生物都以三羧酸循环-氧化磷酸化作为制造ATP的主要过程。该途径如此普遍的原因可能是:与其他的代谢途径,特别是糖酵解之类的无氧发酵途径相比,它能更高效地释放能量。 氧化磷酸化期间,电子在氧化还原反应中从电子供体转移到电子受体,例如氧。氧化还原反应所释放的能量用于合成ATP。在真核生物中,这些氧化还原反应在一系列线粒体内膜上的蛋白质复合体的参与下完成,而在原核生物中,这些蛋白质存在于细胞膜间隙中。这一串蛋白质称为电子传递链。真核生物包含五种主要的蛋白质复合体,而原核生物中存在许多不同的酶,以便利用各种电子供体和受体。 在“电子传递”过程中,质子被电子流过电子传递链所释放的能量泵出线粒体内膜。这会以pH梯度和跨膜电势差的形式产生势能。储存的能量通过让质子顺梯度跨膜内流,由称为ATP合酶的大型酶所使用;这个过程称为化学渗透。这种酶在磷酸化反应过程中就像一台机械马达,酶的一部分在质子流的驱动下不停旋转,将二磷酸腺苷(ADP)合成为三磷酸腺苷。 虽然氧化磷酸化是新陈代谢的重要组成部分,它却会产生活性氧如超氧化物和过氧化氢,使自由基扩散开来,破坏细胞及造成病变,还有可能导致老化。该代谢途径中的酶也是许多药物和毒物所抑制的目标。.

新!!: 二磷酸腺苷和氧化磷酸化 · 查看更多 »

氨甲酰磷酸合成酶

氨甲酰磷酸合成酶(Carbamoyl phosphate synthetase)是催化自穀氨醯胺()或氨()与碳酸氢盐合成氨甲酰磷酸这一反应的一种ATP依赖性酶。此酶催化ATP与碳酸氢盐产生了氨甲酰磷酸与ADP。羰基磷酸盐先与氨反应产生氨基甲酸盐。接下来,氨基甲酸盐与第二分子的ATP反应生成氨甲酰磷酸与ADP。 在原核生物与真核生物中,氨甲酰磷酸合成酶催化了嘧啶与精氨酸的生物合成以及大多数陆栖脊椎动物尿素循环中的首个关键步骤。大多数原核生物都只有一种类型氨甲酰磷酸合成酶,后者同时用于精氨酸与嘧啶的生物合成,然而某些细菌有着分别不同的类型。 此酶有三种不同型,供应各不相同的功能。.

新!!: 二磷酸腺苷和氨甲酰磷酸合成酶 · 查看更多 »

3-磷酸甘油酸

3-磷酸甘油酸(3-phosphoglycerate, 3PG或glycerate 3-phosphate GP)是生物細胞中常見的分子之一,也是糖解作用與卡爾文循環過程裡的中間產物。(註:在卡爾文循環當中簡寫為PGA) 在糖解作用中,3-磷酸甘油酸是1,3-雙磷酸甘油酸在磷酸甘油酸激酶(Phosphoglycerate kinase)的催化中產生。每一分子1,3-雙磷酸甘油酸會使一分子的ADP轉變成為的ATP,原理是接在1,3-雙磷酸甘油酸上的兩個磷酸根,其中有一個轉移到ADP之上。這個反應需要鎂離子(Mg2+)的幫助。 接下來3-磷酸甘油酸將會在磷酸甘油酸變位酶(Phosphoglycerate)的催化下生成2-磷酸甘油酸,在此反應中,原本接在3-磷酸甘油酸的第3個碳上的磷酸根,將會轉移到變位酶上;然後原本在變位酶上的磷酸根,則會接到3-磷酸甘油酸的第2個碳上,反應前後的變位酶整體結構沒有變化。與上一步驟相同,此反應同樣需要Mg2+。 Category:糖酵解 Category:羧酸阴离子 Category:磷酸酯 Category:光合作用.

新!!: 二磷酸腺苷和3-磷酸甘油酸 · 查看更多 »

58-64-0

#重定向 二磷酸腺苷.

新!!: 二磷酸腺苷和58-64-0 · 查看更多 »

重定向到这里:

ADP双磷酸腺苷腺苷二磷酸腺苷雙磷酸

传出传入
嘿!我们在Facebook上吧! »