之间無限深方形阱和量子穿隧效應相似
無限深方形阱和量子穿隧效應有(在联盟百科)9共同点: 经典力学,物質波,駐波,薛定谔方程,量子力学,概率,波函数,有限位勢壘,普朗克常数。
经典力学
经典力学是力学的一个分支。经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基本学科。在物理學裏,经典力学是最早被接受为力學的一个基本綱領。经典力学又分为静力学(描述静止物体)、运动学(描述物体运动)和动力学(描述物体受力作用下的运动)。16世纪,伽利略·伽利莱就已采用科学实验和数学分析的方法研究力学。他为后来的科学家提供了许多豁然开朗的启示。艾萨克·牛顿则是最早使用数学语言描述力学定律的科学家。.
物質波
物理学中,物質波(即德布羅意波)係指所有物質的波(见波粒二象性)。 德布羅意說明了波長和動量成反比;頻率和總能成正比之關係,是路易·德布羅意於1923年在他的博士論文提出的。 第一德布羅意方程指出,粒子波長λ(亦稱「德布羅意波長」)和動量p的關係:(下式中普朗克常數h、粒子靜質量m、粒子速度v、勞侖茲因子γ和真空光速c) 第二德布羅意方程指出頻率ν和總能E的關係: 這兩個式子通常寫作.
無限深方形阱和物質波 · 物質波和量子穿隧效應 ·
駐波
波(standing wave或stationary wave)為兩個波長、週期、頻率和波速皆相同的正弦波相向行進干涉而成的合成波。与行波不同,駐波的波形無法前進,因此無法傳播能量,故名之。 駐波通過時,每一個質點皆作簡諧運動。各質點振盪的幅度不相等,振幅為零的點稱為節點或波節(Node),振幅最大的點位於兩節點之间,稱為腹點或波腹(Antinode)。由於節點靜止不動,所以波形沒有傳播。能量以動能和勢能的形式交換儲存,亦傳播不出去。两列传播方向相反的相干波相遇而产生干涉,或介质沿波速的相反方向运动时,均可产生这个现象。常见的驻波现象是谐振器中,一列波与自身的反射波产生干涉而形成的。 1860年,首次发现,并创造了“驻波”(stehende Welle或Stehwelle)一词。.
薛定谔方程
在量子力學中,薛定諤方程(Schrödinger equation)是描述物理系統的量子態怎樣隨時間演化的偏微分方程,为量子力學的基礎方程之一,其以發表者奧地利物理學家埃尔温·薛定諤而命名。關於量子態與薛定諤方程的概念涵蓋於基礎量子力學假說裏,無法從其它任何原理推導而出。 在古典力學裏,人们使用牛頓第二定律描述物體運動。而在量子力學裏,類似的運動方程為薛定諤方程。薛定諤方程的解完備地描述物理系統裏,微觀尺寸粒子的量子行為;這包括分子系統、原子系統、亞原子系統;另外,薛定諤方程的解還可完備地描述宏觀系統,可能乃至整個宇宙。 薛定諤方程可以分為「含時薛定諤方程」與「不含時薛定諤方程」兩種。含時薛定諤方程與時間有關,描述量子系統的波函數怎樣隨著時間而演化。不含時薛定諤方程则與時間無關,描述了定態量子系統的物理性質;該方程的解就是定態量子系統的波函數。量子事件發生的機率可以用波函數來計算,其機率幅的絕對值平方就是量子事件發生的機率密度。 薛定諤方程所屬的波動力學可以數學變換為維爾納·海森堡的矩陣力學,或理察·費曼的路徑積分表述。薛定諤方程是個非相對論性方程,不適用於相對論性理論;對於相對論性微觀系統,必須改使用狄拉克方程或克莱因-戈尔登方程等。.
量子力学
量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.
概率
--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.
波函数
在量子力學裏,量子系統的量子態可以用波函數(wave function)來描述。薛丁格方程式設定波函數如何隨著時間流逝而演化。從數學角度來看,薛丁格方程式乃是一種波動方程式,因此,波函數具有類似波的性質。這說明了波函數這術語的命名原因。 波函數 \Psi (\mathbf,t) 是一種複值函數,表示粒子在位置 \mathbf 、時間 t 的機率幅,它的絕對值平方 |\Psi(\mathbf,t)|^2 是在位置 \mathbf 、時間 t 找到粒子的機率密度。以另一種角度詮釋,波函數\Psi (\mathbf,t)是「在某時間、某位置發生相互作用的概率幅」。 波函數的概念在量子力學裏非常基礎與重要,諸多關於量子力學詮釋像謎一樣之結果與困惑,都源自於波函數,甚至今天,這些論題仍舊尚未獲得滿意解答。.
波函数和無限深方形阱 · 波函数和量子穿隧效應 ·
有限位勢壘
在量子力學裏,有限位勢壘是一種位勢。在壘外,位勢為 0 ,在壘內,位勢為有限值 。有限位勢壘問題專門研討在這種位勢的作用中,一個粒子的量子行為。如圖右,最簡單的有限位勢壘是方形壘,壘高是一個常數。在這條目裏,只研討這種位勢壘。 通常,在經典力學裏,一維的有限位勢壘問題會設定一個粒子,從位勢壘的左邊,往位勢壘移動。假若,粒子的能量大於位勢壘的位勢。則這粒子,在經過位勢壘的時候,因為動能的轉換為位能,速度會降低,但方向不會改變。當移動至位勢壘外時,速度又會回復至原本值。假若,粒子的能量小於位勢壘的位勢,則在與位勢壘彈性碰撞之後,這粒子會改變方向,以同樣的速率,往回移動。粒子絕對無法存在於位勢壘內或越過位勢壘。 在量子力學裏,粒子的量子行為,是取決於其波函數。由於粒子沒有被有限位勢壘束縛,粒子的能量不是離散能量譜的特殊容許值,而是大於 0 的任意值,因此不需要求算粒子的能量。在這裏,主要研究的是粒子的一維散射 。這是一個很有意思的領域。假若,粒子的能量大於位勢壘的位勢。由於往位勢壘傳播的波函數,並不是完全地透射過位勢壘,仍舊有一部分反射回來。所以,反射的機率幅大於 0 ,粒子被反射回來的機率大於 0 。假若,粒子的能量小於位勢壘的位勢,雖然波函數會呈指數地遞減,在位勢壘內,機率幅仍舊大於 0 。所以,這粒子存在於位勢壘內的機率大於 0。不止這樣,機率幅在位勢壘外的另一邊也大於 0 。假若,位勢壘的位勢並不大大的超過粒子的能量,位勢壘的壘寬也並不很寬,則粒子穿越位勢壘的機率會是很顯著的,稱這效應為量子穿隧效應。透射的可能性,稱為透射係數;反射的可能性,則稱為反射係數。.
普朗克常数
普朗克常數記為h,是一個物理常數,用以描述量子大小。在量子力學中佔有重要的角色,馬克斯·普朗克在1900年研究物体热辐射的规律时发现,只有假定电磁波的发射和吸收不是连续的,而是一份一份地进行的,计算的结果才能和实验结果是相符。这样的一份能量叫做能量子,每一份能量子等于普朗克常數乘以辐射电磁波的频率。这关系称为普朗克关系,用方程式表示普朗克关系式: 其中,E 是能量,h 是普朗克常數,\nu 是频率。 普朗克常數的值約為: 普朗克常數的量綱為能量乘上時間,也可視為動量乘上位移量: (牛頓(N)·公尺(m)·秒(s))為角動量單位.
上面的列表回答下列问题
- 什么無限深方形阱和量子穿隧效應的共同点。
- 什么是無限深方形阱和量子穿隧效應之间的相似性
無限深方形阱和量子穿隧效應之间的比较
無限深方形阱有46个关系,而量子穿隧效應有142个。由于它们的共同之处9,杰卡德指数为4.79% = 9 / (46 + 142)。
参考
本文介绍無限深方形阱和量子穿隧效應之间的关系。要访问该信息提取每篇文章,请访问: