我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

平行公設和直线

快捷方式: 差异相似杰卡德相似系数参考

平行公設和直线之间的区别

平行公設 vs. 直线

平行公設(Parallel postulate),也稱為歐幾里得第五公設,因是《幾何原本》五條公設的第五條而得名。這是歐幾里得幾何一條與別不同的公理,比前四條複雜。公設是說: 假定所有歐幾里得公設(當中包括平行公設)都成立的幾何称为歐幾里得幾何。假定平行公設不成立的稱為非歐幾里得幾何。不依賴於平行公設的幾何,也就是只假設前四條公設的,稱為仿射幾何 这只是一个与平行线的性质有关的公设。欧几里得已在《几何原本》第I卷定义第23条中定义过平行线了。。 歐幾里得幾何的有些性質與平行公設等價,也就是假設平行公設成立,可推導出這些性質,反过来假設這些性質的一項為公理,也可以推導出平行公設。其中最重要的一項,也是最常作為公理代替平行公設的,要算是蘇格蘭數學家约翰·普莱费尔提出的普莱费尔公理: 这里有个问题要提出来,即在证明第五公设时,平面是不加定义,如果平面作如下定义:满足第五公设的面定义为平面。这实际上可用公理法对平面作定义。如果有这定义,第五公设是自明的。这才符合直观。. 線,是一個點在平面或空間沿著一定方向和其相反方向運動的軌跡;不彎曲的線。直線是幾何學的基本概念,在不同的幾何學體系中有著不同的描述。在這裡主要描述歐幾里得空間中的直線。其他曲率非零狀況下的直線,請參考非歐幾里得幾何。 歐幾里得幾何研究曲率為零的空間下狀況,它並未對點、直線、平面、空間給出定義,而是通過公理來描述點線面的關係。 歐幾里得幾何中的直線可以看作是一個點的集合,這個集合中的任意一點都在這個集合中的其他任意兩點所確定的直綫上。 “過兩點有且只有一條直線”是歐幾里得幾何體系中的一條公理,“有且只有”意即“確定”,即兩點確定一直線。 在幾何學中,直線沒有粗細、沒有端點、沒有方向性、具有無限的長度、具有確定的位置。.

之间平行公設和直线相似

平行公設和直线有(在联盟百科)3共同点: 公理非欧几里得几何欧几里得几何

公理

在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b.

公理和平行公設 · 公理和直线 · 查看更多 »

非欧几里得几何

非欧几里得几何,简称非欧几何,是多个几何形式系统的统称,与欧几里得几何的差别在于第五公设。.

平行公設和非欧几里得几何 · 直线和非欧几里得几何 · 查看更多 »

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

平行公設和欧几里得几何 · 欧几里得几何和直线 · 查看更多 »

上面的列表回答下列问题

平行公設和直线之间的比较

平行公設有14个关系,而直线有21个。由于它们的共同之处3,杰卡德指数为8.57% = 3 / (14 + 21)。

参考

本文介绍平行公設和直线之间的关系。要访问该信息提取每篇文章,请访问: