我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

平行公設和欧几里得几何

快捷方式: 差异相似杰卡德相似系数参考

平行公設和欧几里得几何之间的区别

平行公設 vs. 欧几里得几何

平行公設(Parallel postulate),也稱為歐幾里得第五公設,因是《幾何原本》五條公設的第五條而得名。這是歐幾里得幾何一條與別不同的公理,比前四條複雜。公設是說: 假定所有歐幾里得公設(當中包括平行公設)都成立的幾何称为歐幾里得幾何。假定平行公設不成立的稱為非歐幾里得幾何。不依賴於平行公設的幾何,也就是只假設前四條公設的,稱為仿射幾何 这只是一个与平行线的性质有关的公设。欧几里得已在《几何原本》第I卷定义第23条中定义过平行线了。。 歐幾里得幾何的有些性質與平行公設等價,也就是假設平行公設成立,可推導出這些性質,反过来假設這些性質的一項為公理,也可以推導出平行公設。其中最重要的一項,也是最常作為公理代替平行公設的,要算是蘇格蘭數學家约翰·普莱费尔提出的普莱费尔公理: 这里有个问题要提出来,即在证明第五公设时,平面是不加定义,如果平面作如下定义:满足第五公设的面定义为平面。这实际上可用公理法对平面作定义。如果有这定义,第五公设是自明的。这才符合直观。. 欧几里得几何指按照欧几里得的《几何原本》构造的几何学。 欧几里得几何有时就指二维平面上的几何,即平面几何,本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何,高维的情形请参看欧几里得空间。 数学上,欧几里得几何是指二维平面和三维空间中的几何,基于。数学家也用这一术语表示具有相似性质的高维几何。 其中公設五又稱之為平行公設(Parallel Axiom),敘述比較複雜,這個公設衍生出「三角形內角和等於一百八十度」的定理。在高斯(F., 1777年—1855年)的時代,公設五就備受質疑,俄羅斯數學家羅巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利數學家波約(Bolyai)闡明第五公設只是公理系統的一種可能選擇,並非必然的幾何真理,也就是「三角形內角和不一定等於一百八十度」,從而發現非歐幾里得的幾何學,即非歐幾何(non-Euclidean geometry)。.

之间平行公設和欧几里得几何相似

平行公設和欧几里得几何有(在联盟百科)6共同点: 几何原本公理线段直角非欧几里得几何欧几里得

几何原本

《几何原本》(Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在四庫全書中為子部天文演算法算書類。.

几何原本和平行公設 · 几何原本和欧几里得几何 · 查看更多 »

公理

在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b.

公理和平行公設 · 公理和欧几里得几何 · 查看更多 »

线段

在數學上,線段是直線上两点间的一段,这两个点称为端点。參見區間。 當終點均在圓周上,該線段稱為弦。當它們都是多邊形的頂點,若它們是毗鄰的頂點該線段為邊,否則就是對角線。 在生活應用上,主要有三種——連結、隔開、刪.

平行公設和线段 · 欧几里得几何和线段 · 查看更多 »

直角

在幾何學和三角學中,直角,又稱正角,是角度為90度的角。它相對於四分之一個圓周(即四分之一個圓形),因为把圆周对应的圆心角划分为360度,所以直角等于90度,而兩個直角便等於一個平角(180°)。角度比直角小的稱為銳角,比直角大而比平角小的稱為鈍角。 當兩條線的夾角是直角,這兩條線便是互相垂直,是幾何上的一個重要性質。而一個三角形的其中一個內角為90°時,便稱為直角三角形,是應用畢氏定理的先決條件。 如果直線AB為圓形的直徑,那麼取圓上的任何一點C所形成的三角形,∠ACB必為90°,是圓的其中一個性質,名為(半圓上的圓周角)。 在不同的應用上,直角有多種表示:.

平行公設和直角 · 欧几里得几何和直角 · 查看更多 »

非欧几里得几何

非欧几里得几何,简称非欧几何,是多个几何形式系统的统称,与欧几里得几何的差别在于第五公设。.

平行公設和非欧几里得几何 · 欧几里得几何和非欧几里得几何 · 查看更多 »

欧几里得

欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.

平行公設和欧几里得 · 欧几里得和欧几里得几何 · 查看更多 »

上面的列表回答下列问题

平行公設和欧几里得几何之间的比较

平行公設有14个关系,而欧几里得几何有35个。由于它们的共同之处6,杰卡德指数为12.24% = 6 / (14 + 35)。

参考

本文介绍平行公設和欧几里得几何之间的关系。要访问该信息提取每篇文章,请访问: