我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

奇异值分解和正规矩阵

快捷方式: 差异相似杰卡德相似系数参考

奇异值分解和正规矩阵之间的区别

奇异值分解 vs. 正规矩阵

奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或厄米矩陣基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。. 在数学中,正规矩阵 \mathbf是与自己的共轭转置交换的复系数方块矩阵,也就是说, \mathbf满足 其中\mathbf^*是\mathbf的共轭转置。 如果\mathbf是实系数矩阵,则\mathbf^*.

之间奇异值分解和正规矩阵相似

奇异值分解和正规矩阵有(在联盟百科)11共同点: 实数對角矩陣矩阵特征向量特征值和特征向量谱定理酉矩阵标准正交基正定矩阵正交正交矩阵

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

奇异值分解和实数 · 实数和正规矩阵 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

奇异值分解和對角矩陣 · 對角矩陣和正规矩阵 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

奇异值分解和矩阵 · 正规矩阵和矩阵 · 查看更多 »

特征向量

#重定向 特征值和特征向量.

奇异值分解和特征向量 · 正规矩阵和特征向量 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

奇异值分解和特征值和特征向量 · 正规矩阵和特征值和特征向量 · 查看更多 »

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

奇异值分解和谱定理 · 正规矩阵和谱定理 · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

奇异值分解和酉矩阵 · 正规矩阵和酉矩阵 · 查看更多 »

标准正交基

在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"(Orthonormal basis)。 无论在有限维还是无限维空间中,正交基的概念都是很重要的。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间(而不是整个空间)的集合。 注意,在没有定义内积的空间中,“正交基”一词是没有意义的。因此,一个具有正交基的巴拿赫空间,就是一个希尔伯特空间。.

奇异值分解和标准正交基 · 标准正交基和正规矩阵 · 查看更多 »

正定矩阵

在线性代数裡,正定矩阵是埃尔米特矩阵的一种,有时会简称为正定阵。在线性代数中,正定矩阵的性质類似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(複域中则对应埃尔米特正定双线性形式)。.

奇异值分解和正定矩阵 · 正定矩阵和正规矩阵 · 查看更多 »

正交

正交是线性代数的概念,是垂直這一直觀概念的推廣。作為一個形容詞,只有在一個確定的內積空間中才有意義。若內積空間中兩向量的內積為0,則稱它們是正交的。如果能夠定義向量間的夾角,則正交可以直觀的理解為垂直。物理中:運動的獨立性,也可以用正交來解釋。.

奇异值分解和正交 · 正交和正规矩阵 · 查看更多 »

正交矩阵

在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.

奇异值分解和正交矩阵 · 正交矩阵和正规矩阵 · 查看更多 »

上面的列表回答下列问题

奇异值分解和正规矩阵之间的比较

奇异值分解有29个关系,而正规矩阵有31个。由于它们的共同之处11,杰卡德指数为18.33% = 11 / (29 + 31)。

参考

本文介绍奇异值分解和正规矩阵之间的关系。要访问该信息提取每篇文章,请访问: