我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

奇异值分解和矩阵

快捷方式: 差异相似杰卡德相似系数参考

奇异值分解和矩阵之间的区别

奇异值分解 vs. 矩阵

奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解在某些方面与对称矩阵或厄米矩陣基于特征向量的对角化类似。然而这两种矩阵分解尽管有其相关性,但还是有明显的不同。对称阵特征向量分解的基础是谱分析,而奇异值分解则是谱分析理论在任意矩阵上的推广。. 數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

之间奇异值分解和矩阵相似

奇异值分解和矩阵有(在联盟百科)17共同点: 基 (線性代數)可对角化矩阵实数對角矩陣單位矩陣矩阵矩阵分解秩 (线性代数)统计学特征向量特征分解特征值和特征向量谱定理酉矩阵零空间正交矩阵最小二乘法

基 (線性代數)

在线性代数中,基(basis)(也称为基底)是描述、刻画向量空间的基本工具。向量空间的基是它的一个特殊的子集,基的元素称为基向量。向量空间中任意一个元素,都可以唯一地表示成基向量的线性组合。如果基中元素个数有限,就称向量空间为有限维向量空间,将元素的个数称作向量空间的维数。 使用基底可以便利地描述向量空间。比如说,考察从一个向量空间\mathrm射出的线性变换f,可以查看这个变换作用在向量空间的一组基\mathfrak上的效果。掌握了f(\mathfrak),就等于掌握了f对\mathrm中任意元素的效果。 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那么可以证明任何向量空间都拥有一组基。一个向量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分向量都是线性无关的;反之,如果向量空间拥有一组基,那么在向量空间中取一组线性无关的向量,一定能将它扩充为一组基。在内积向量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。.

基 (線性代數)和奇异值分解 · 基 (線性代數)和矩阵 · 查看更多 »

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T: V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,且其次方可通过計算对角元素同样的次方来獲得。 若尔当-谢瓦莱分解表达一个算子为它的对角部分与它的幂零部分的和。.

可对角化矩阵和奇异值分解 · 可对角化矩阵和矩阵 · 查看更多 »

实数

实数,是有理數和無理數的总称,前者如0、-4、81/7;后者如\sqrt、\pi等。实数可以直观地看作小數(有限或無限的),它們能把数轴「填滿」。但僅僅以枚舉的方式不能描述實數的全體。实数和虚数共同构成复数。 根据日常经验,有理數集在數軸上似乎是「稠密」的,于是古人一直认为用有理數即能滿足測量上的實際需要。以邊長為1公分的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001公分),總可以用有理數來表示足夠精確的測量結果(比如1.414公分)。但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念;他們原以為:.

奇异值分解和实数 · 实数和矩阵 · 查看更多 »

對角矩陣

對角矩陣(diagonal matrix)是一個主對角線之外的元素皆為0的矩陣。對角線上的元素可以為0或其他值。因此n行n列的矩陣\mathbf.

奇异值分解和對角矩陣 · 對角矩陣和矩阵 · 查看更多 »

單位矩陣

在線性代數中,n階單位矩陣,是一個n \times n的方形矩陣,其主對角線元素為1,其餘元素為0。單位矩陣以I_n表示;如果階數可忽略,或可由前後文確定的話,也可簡記為I(或者E)。(在部分領域中,如量子力學,單位矩陣是以粗體字的1表示,否則無法與I作區別。) I_1.

單位矩陣和奇异值分解 · 單位矩陣和矩阵 · 查看更多 »

矩阵

數學上,一個的矩陣是一个由--(row)--(column)元素排列成的矩形阵列。矩陣--的元素可以是数字、符号或数学式。以下是一个由6个数字元素构成的2--3--的矩阵: 大小相同(行数列数都相同)的矩阵之间可以相互加减,具体是对每个位置上的元素做加减法。矩阵的乘法则较为复杂。两个矩阵可以相乘,当且仅当第一个矩阵的--数等于第二个矩阵的--数。矩阵的乘法满足结合律和分配律,但不满足交换律。 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如.

奇异值分解和矩阵 · 矩阵和矩阵 · 查看更多 »

矩阵分解

矩阵分解(decomposition, factorization)是多半将矩阵拆解为数个三角形矩阵(triangular matrix),依使用目的的不同,可分为几类。.

奇异值分解和矩阵分解 · 矩阵和矩阵分解 · 查看更多 »

秩 (线性代数)

在线性代数中,一个矩阵A的列秩是A的线性獨立的纵列的极大数目。类似地,行秩是A的线性獨立的横行的极大数目。 矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。.

奇异值分解和秩 (线性代数) · 矩阵和秩 (线性代数) · 查看更多 »

统计学

统计学是在資料分析的基础上,研究测定、收集、整理、归纳和分析反映數據資料,以便给出正确訊息的科學。這一门学科自17世纪中叶产生并逐步发展起来,它廣泛地應用在各門學科,從自然科学、社會科學到人文學科,甚至被用於工商業及政府的情報決策。隨著大数据(Big Data)時代來臨,統計的面貌也逐漸改變,與資訊、計算等領域密切結合,是資料科學(Data Science)中的重要主軸之一。 譬如自一組數據中,可以摘要並且描述這份數據的集中和離散情形,這個用法稱作為描述統計學。另外,觀察者以數據的形態,建立出一個用以解釋其隨機性和不確定性的數學模型,以之來推論研究中的步驟及母體,這種用法被稱做推論統計學。這兩種用法都可以被稱作為應用統計學。數理統計學则是討論背後的理論基礎的學科。.

奇异值分解和统计学 · 矩阵和统计学 · 查看更多 »

特征向量

#重定向 特征值和特征向量.

奇异值分解和特征向量 · 特征向量和矩阵 · 查看更多 »

特征分解

线性代数中,特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。.

奇异值分解和特征分解 · 特征分解和矩阵 · 查看更多 »

特征值和特征向量

在数学上,特别是线性代数中,对于一个给定的矩阵A,它的特征向量(eigenvector,也譯固有向量或本征向量)v 经过这个线性变换之后,得到的新向量仍然与原来的v 保持在同一條直線上,但其长度或方向也许會改变。即 \lambda為純量,即特征向量的长度在该线性变换下缩放的比例,称\lambda 为其特征值(本征值)。如果特徵值為正,则表示v 在经过线性变换的作用后方向也不变;如果特徵值為負,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。图1给出了一个以著名油画《蒙娜丽莎》为题材的例子。在一定条件下(如其矩阵形式为实对称矩阵的线性变换),一个变换可以由其特征值和特征向量完全表述,也就是說:所有的特徵向量組成了這向量空間的一組基底。一个特征空间(eigenspace)是具有相同特征值的特征向量与一个同维数的零向量的集合,可以证明该集合是一个线性子空间,比如\textstyle E_\lambda.

奇异值分解和特征值和特征向量 · 特征值和特征向量和矩阵 · 查看更多 »

谱定理

数学上,特别是线性代数和泛函分析中,谱定理是关于线性算子或者矩阵的一些结果。泛泛来讲,谱定理给出了算子或者矩阵可以对角化的条件(也就是可以在某个基底中用对角矩阵来表示)。对角化的概念在有限维空间中比较直接,但是对于无穷维空间中的算子需要作一些修改。通常,谱定理辨认出一族可以用乘法算子来代表的线性算子,这是可以找到的最简单的情况了。用更抽象的语言来讲,谱定理是关于交换C*-代数的命题。参看谱分析中的历史观点。 可以应用谱定理的例子有希尔伯特空间上的自伴算子或者更一般的正规算子。 谱定理也提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。 本条目中,主要考虑谱定理的简单情况,也就是希尔伯特空间上的自伴算子。但是,如上文所述,谱定理也对希尔伯特空间上的正规算子成立。.

奇异值分解和谱定理 · 矩阵和谱定理 · 查看更多 »

酉矩阵

若一n行n列的複数矩阵U满足 其中I_n\,为n阶单位矩阵,U^\dagger \,为U的共轭转置,则U称为--(又译作--、--。英文:Unitary Matrix, Unitary是歸一或單位的意思)。即,矩阵U为酉矩阵,当且仅当其共轭转置U^\dagger \,为其逆矩阵: 若酉矩阵的元素都是实数,其即为正交矩阵。与正交矩阵G不会改变两个实向量的内积类似, 酉矩阵U不改变两个复向量的内积: 若U \,为n阶方阵,则下列条件等价:.

奇异值分解和酉矩阵 · 矩阵和酉矩阵 · 查看更多 »

零空间

在数学中,一个算子 A 的零空间是方程 Av.

奇异值分解和零空间 · 矩阵和零空间 · 查看更多 »

正交矩阵

在矩阵论中,正交矩阵(orthogonal matrix)是一個方块矩阵Q,其元素為实数,而且行與列皆為正交的单位向量,使得該矩陣的转置矩阵為其逆矩阵: 其中,I為單位矩陣。正交矩陣的行列式值必定為+1或-1,因為: 底下是一些重要的性質:.

奇异值分解和正交矩阵 · 正交矩阵和矩阵 · 查看更多 »

最小二乘法

最小二乘法(又称--)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 “最小平方法”是對過度確定系統,即其中存在比未知數更多的方程組,以迴歸分析求得近似解的標準方法。在這整個解決方案中,最小平方法演算為每一方程式的結果中,將殘差平方和的總和最小化。 最重要的應用是在曲線擬合上。最小平方所涵義的最佳擬合,即殘差(殘差為:觀測值與模型提供的擬合值之間的差距)平方總和的最小化。當問題在自變量(x變量)有重大不確定性時,那麼使用簡易迴歸和最小平方法會發生問題;在這種情況下,須另外考慮變量-誤差-擬合模型所需的方法,而不是最小平方法。 最小平方問題分為兩種:線性或普通的最小平方法,和非線性的最小平方法,取決於在所有未知數中的殘差是否為線性。線性的最小平方問題發生在統計迴歸分析中;它有一個封閉形式的解決方案。非線性的問題通常經由迭代細緻化來解決;在每次迭代中,系統由線性近似,因此在這兩種情況下核心演算是相同的。 最小平方法所得出的多項式,即以擬合曲線的函數來描述自變量與預計應變量的變異數關係。 當觀測值來自指數族且滿足輕度條件時,最小平方估計和最大似然估计是相同的。最小平方法也能從動差法得出。 以下討論大多是以線性函數形式來表示,但對於更廣泛的函數族,最小平方法也是有效和實用的。此外,迭代地將局部的二次近似應用於或然性(藉由費雪信息),最小平方法可用於擬合廣義線性模型。 其它依據平方距離的目標加總函數作為逼近函數的主題,請參見最小平方法(函數近似)。 最小平方法通常歸功於高斯(Carl Friedrich Gauss,1795),但最小平方法是由阿德里安-马里·勒让德(Adrien-Marie Legendre)首先發表的。.

奇异值分解和最小二乘法 · 最小二乘法和矩阵 · 查看更多 »

上面的列表回答下列问题

奇异值分解和矩阵之间的比较

奇异值分解有29个关系,而矩阵有194个。由于它们的共同之处17,杰卡德指数为7.62% = 17 / (29 + 194)。

参考

本文介绍奇异值分解和矩阵之间的关系。要访问该信息提取每篇文章,请访问: