我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

向量和点积

快捷方式: 差异相似杰卡德相似系数参考

向量和点积之间的区别

向量 vs. 点积

向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。. 在数学中,点积(Skalarprodukt、Dot Product)又称--或标量积(Skalarprodukt、Scalar Product),是一种接受两个等长的数字序列(通常是坐标向量)、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标向量的点积常称为內積(inneres Produkt、Inner Product),见内积空间。 从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。 点积的名称源自表示点乘运算的点号(a·b),标量积的叫法则是在强调其运算结果为标量而非向量。向量的另一种乘法是叉乘(a×b),其结果为向量,称为叉积或向量积。 點积是--的一种特殊形式。.

之间向量和点积相似

向量和点积有(在联盟百科)18共同点: 单位向量叉积向量积向量空间坐標系交換律位移笛卡尔坐标系结合律物理学行向量行向量與列向量范数标量标量乘法欧几里得空间数学

在物理學中,力是任何導致自由物體歷經速度、方向或外型的變化的影響。力也可以藉由直覺的概念來描述,例如推力或拉力,這可以導致一個有質量的物體改變速度(包括從靜止狀態開始運動)或改变其方向。一個力包括大小和方向,這使力是一個向量。牛頓第二定律,\mathbf.

力和向量 · 力和点积 · 查看更多 »

单位向量

数学上,赋范向量空间中的单位向量就是长度为1的向量。单位向量的符号通常有个“帽子”,如:\mathbf。欧几里得空间中,两个单位向量的点积就是它们之间角度的余弦(因为它们的长度都是1)。 一个非零向量\mathbf的正规化向量\mathbf就是平行于\mathbf的单位向量: 这里\|\mathbf\|是\mathbf的范数(长度)。正规化向量有时候也可以当作单位向量的同义词。一组基的元素通常被选为单位向量。在三维直角坐标系中,通常是\mathbf, \mathbf, \mathbf,分别为沿着x, y, z方向的单位向量: 在其他坐标系中,如极坐标系、球坐标系,使用不同的单位向量,符号也会不一样。.

单位向量和向量 · 单位向量和点积 · 查看更多 »

叉积

在数学和向量代数领域,叉積(Cross product)又称向量积(Vector product),是对三维空间中的两个向量的二元运算,使用符号 \times。与点积不同,它的运算结果是向量。对于线性无关的两个向量 \mathbf 和 \mathbf,它们的叉积写作 \mathbf \times \mathbf,是 \mathbf 和 \mathbf 所在平面的法线向量,与 \mathbf 和 \mathbf 都垂直。叉积被广泛运用于数学、物理、工程学、计算机科学领域。 如果两个向量方向相同或相反(即它们非线性无关),亦或任意一个的长度为零,那么它们的叉积为零。推广开来,叉积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们叉积的模长即为两者长度的乘积。 叉积和点积一样依赖于欧几里德空间的度量,但与点积之不同的是,叉积还依赖于定向或右手定則。.

叉积和向量 · 叉积和点积 · 查看更多 »

向量积

#重定向 叉积.

向量和向量积 · 向量积和点积 · 查看更多 »

向量空间

向量空間是现代数学中的一个基本概念。是線性代數研究的基本对象。 向量空间的一个直观模型是向量几何,幾何上的向量及相关的運算即向量加法,標量乘法,以及对運算的一些限制如封闭性,结合律,已大致地描述了“向量空間”这个數學概念的直观形象。 在现代数学中,“向量”的概念不仅限于此,满足下列公理的任何数学对象都可被当作向量处理。譬如,實系數多項式的集合在定义适当的运算后构成向量空間,在代数上处理是方便的。单变元实函数的集合在定义适当的运算后,也构成向量空间,研究此类函数向量空间的数学分支称为泛函分析。.

向量和向量空间 · 向量空间和点积 · 查看更多 »

坐標系

坐標系是數學或物理學用語,定義如下: 对于一个n维系统,能够使每一个点和一组(n个)标量构成一一对应的系统。 坐標系可以用一個有序多元组表示一個點的位置。一般常用的坐標系,各維坐標的數字均為實數,但在高等數學中坐標的數字可能是複數,甚至是或是其他抽象代數中的元素(如交换环)。坐標系可以使幾何學的問題轉換為數字的問題,反之亦然,是解析幾何學的基礎。 描述地理位置時所用的經度及緯度就是坐標系統的一種。在物理學中,描述一系統在空間中運動的參考坐標系統則稱作參考系。.

向量和坐標系 · 坐標系和点积 · 查看更多 »

交換律

交換律(Commutative property)是被普遍使用的一個數學名詞,意指能改變某物的順序而不改變其最終結果。交換律是大多數數學分支中的基本性質,而且許多的數學證明需要倚靠交換律。簡單運算的交換律許久都被假定存在,且沒有給定其一特定的名稱,直到19世紀,數學家開始形式化數學理論之後,交換律才被聲明。.

交換律和向量 · 交換律和点积 · 查看更多 »

位移

在物理學裏,位移是位置的改變。假設從舊位置\mathbf\,\!改變到新位置\mathbf\,\!,則位移是\Delta\mathbf.

位移和向量 · 位移和点积 · 查看更多 »

笛卡尔坐标系

在數學裏,笛卡兒坐標系(Cartesian coordinate system),也稱直角坐標系,是一種正交坐標系。參閱圖1,二維的直角坐標系是由兩條相互垂直、相交於原點的數線構成的。在平面內,任何一點的坐標是根據數軸上對應的點的座標設定的。在平面內,任何一點與坐標的對應關係,類似於數軸上點與坐標的對應關係。 採用直角坐標,幾何形狀可以用代數公式明確的表達出來。幾何形狀的每一個點的直角坐標必須遵守這代數公式。例如:直線可以標準式ax+by+c.

向量和笛卡尔坐标系 · 点积和笛卡尔坐标系 · 查看更多 »

结合律

在數學中,結合律(associative laws)是二元運算可以有的一個性質,意指在一個包含有二個以上的可結合運算子的表示式,只要運算元的位置沒有改變,其運算的順序就不會對運算出來的值有影響。亦即,重新排列表示式中的括號並不會改變其值。例如: 上式中的括號雖然重新排列了,但表示式的值依然不變。當這在任何實數的加法上都成立時,我們說「實數的加法是一個可結合的運算」。 結合律不應該和交換律相混淆。交換律會改變表示式中運算元的位置,而結合律則不會。例如: 是一個結合律的例子,因為其中的括號改變了(且因此運算子在運算中的順序也改變了),而運算元5、2、1則在原來的位置中。再來, 則不是一個結合律的例子,因為運算元2和5的位置互換了。 可結合的運算在數學中是很常見的,且事實上,大多數的代數結構確實會需要它們的二元運算是可結合的。不過,也有許多重要且有趣的運算是不可結合的;其中一個簡單的例子為向量積。.

向量和结合律 · 点积和结合律 · 查看更多 »

物理学

物理學(希臘文Φύσις,自然)是研究物質、能量的本質與性質,以及它們彼此之間交互作用的自然科學。由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是自然科學中最基礎的學科之一。物理學是一種實驗科學,物理學者從觀測與分析大自然的各種基於物質與能量的現象來找出其中的模式。這些模式(假說)稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為物理定律,直到有一天被證明是有錯誤為止(具可否證性)。物理學是由這些定律精緻地建構而成。物理學是自然科學中最基礎的學科之一。化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 物理學是最古老的學術之一。物理學、化學、生物學等等原本都歸屬於自然哲學的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。物理學與其它很多跨領域研究有相當的交集,如量子化學、生物物理學等等。物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。例如,由於電磁學的快速發展,電燈、電動機、家用電器等新產品纷纷涌现,人類社會的生活水平也得到大幅提升。由於核子物理學日趨成熟,核能發電已不再是藍圖構想,但其所引致的安全問題也使人們意識到地球環境、生態與人類的脆弱渺小。.

向量和物理学 · 点积和物理学 · 查看更多 »

行向量

#重定向 行向量與列向量.

向量和行向量 · 点积和行向量 · 查看更多 »

行向量與列向量

在 线性代数中,列向量 / 排矩阵 是一个 m × 1 矩阵,m 為任意正整數,例如: 此外,行向量 / 行矩阵 是一个 1 × m 矩阵,m為任意正整數,例如: 黑体字 \mathbf 用于表示行向量或列向量。 行向量的转置(以T表示)是列向量: 而列向量的转置就是行向量: 集合所有的行矢量的 向量空间 称为行空间。同样地,集合所有列矢量的向量空间称为列空间。行列空间的尺寸等的条目数量的行中的或列的矢量。 列空間可以看作是行空間的雙重空間,因為列向量空間上的任何線性函數都可以唯一地表示為具有特定行向量的內積。.

向量和行向量與列向量 · 点积和行向量與列向量 · 查看更多 »

范数

數(norm),是具有“长度”概念的函數。在線性代數、泛函分析及相關的數學領域,是一個函數,其為向量空間內的所有向量賦予非零的正長度或大小。半範數反而可以為非零的向量賦予零長度。 舉一個簡單的例子,一個二維度的歐氏幾何空間\R^2就有歐氏範數。在這個向量空間的元素(譬如:(3,7))常常在笛卡兒座標系統被畫成一個從原點出發的箭號。每一個向量的歐氏範數就是箭號的長度。 擁有範數的向量空間就是賦範向量空間。同樣,擁有半範數的向量空間就是賦半範向量空間。.

向量和范数 · 点积和范数 · 查看更多 »

标量

--(Scalar),又称--,是只有大小,没有方向,可用實數表示的一個量,實際上純量就是實數,純量這個稱法只是為了區別與向量的差別。标量可以是負數,例如溫度低於冰點。与之相对,向量(又称--)既有大小,又有方向。 在物理学中,标量是在坐标变换下保持不变的物理量。例如,欧几里得空间中两点间的距离在坐标变换下保持不变,相对论四维时空中在坐标变换下保持不变。与此相对的矢量,其分量在不同的坐标系中有不同的值,例如速度。标量可被用作定义向量空间。.

向量和标量 · 标量和点积 · 查看更多 »

标量乘法

标量乘法(scalar multiplication)是線性代數中向量空間的一種基本運算(更廣義的,是抽象代數的一個模))。在直覺上,將一個實數向量和一個正的實數進行标量乘法,也就是將其長度乘以此标量,方向不變。标量一詞也從此用法而來:可將向量缩放的量。标量乘法是將標量和向量相乘,結果得到一向量,和內積將兩向量相乘,得到一純量不同。.

向量和标量乘法 · 标量乘法和点积 · 查看更多 »

欧几里得空间

欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到幾何原本。 这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间。 这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备), 希尔伯特空间在高等代数教科书中也被称为欧几里得空间。 为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。 尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。 另存在其他種類的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。.

向量和欧几里得空间 · 欧几里得空间和点积 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

向量和数学 · 数学和点积 · 查看更多 »

上面的列表回答下列问题

向量和点积之间的比较

向量有56个关系,而点积有46个。由于它们的共同之处18,杰卡德指数为17.65% = 18 / (56 + 46)。

参考

本文介绍向量和点积之间的关系。要访问该信息提取每篇文章,请访问: