之间列維-奇維塔符號和行列式相似
列維-奇維塔符號和行列式有(在联盟百科)9共同点: 变换矩阵,向量,廣義克羅內克函數,线性代数,置换的奇偶性,置換,階乘,雅可比矩阵,标准正交基。
变换矩阵
变换矩阵是数学线性代数中的一个概念。 在线性代数中,线性变换能够用矩阵表示。如果T是一个把Rn映射到Rm的线性变换,且x是一个具有n个元素的列向量,那么 我们把m×n的矩阵A,称为T的变换矩阵。.
向量
向量(vector,物理、工程等也称作--)是数学、物理学和工程科学等多个自然科學中的基本概念,指一个同时具有大小和方向,且满足平行四边形法则的几何對象。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量(特别地,电流属既有大小、又有正负方向的量,但由于其运算不满足平行四边形法则,公认为其不属于向量)。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量或数量,即只有大小、绝大多数情况下没有方向(电流是特例)、不满足平行四边形法则的量。.
列維-奇維塔符號和向量 · 向量和行列式 ·
廣義克羅內克函數
#重定向 克罗内克δ函数.
列維-奇維塔符號和廣義克羅內克函數 · 廣義克羅內克函數和行列式 ·
线性代数
线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
置换的奇偶性
在数学中,当X是一个至少有两个元素的有限集合时,X的置换(即从X到X的双射)可分为大小相同的两类:奇置换与偶置换。如果X固定了任何一个全序,X的一个置换\sigma的奇偶性可以定义为\sigma中反向对个数的奇偶性。所谓反向对即X中二元组x,y使得x且\sigma(x)>\sigma(y)。这里\sigma(x)为置换\sigma中第x位的元素。 一个置换\sigma的符号(sign或signature)记作sgn(σ):如果\sigma是偶数则定义为 +1,如果\sigma是奇数则定义为 -1。符号定义了对称群Sn的交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号(\epsilon_\sigma),定义在X到X的所有映射上,而在非双射映射上取值为0。 置换的符号可以清晰地表达为 这里N(\sigma)是\sigma中反向对的个数。或者,置换\sigma的符号也可通过对换分解定义为 这里m是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。.
列維-奇維塔符號和置换的奇偶性 · 置换的奇偶性和行列式 ·
置換
排列(Permutation)是將相異物件或符號根據確定的順序重排。每個順序都稱作一個排列對於不排序的情形,請見條目組合。。例如,從一到六的數字有720種排列,對應於由這些數字組成的所有不重複亦不闕漏的序列,例如"4, 5, 6, 1, 2, 3" 與1, 3, 5, 2, 4, 6。 置換的廣義概念在不同語境下有不同的形式定義:.
列維-奇維塔符號和置換 · 置換和行列式 ·
階乘
一个正整数的階乘(factorial)是所有小於及等於該數的正整數的積,并且有0的阶乘为1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。 亦即n!.
列維-奇維塔符號和階乘 · 行列式和階乘 ·
雅可比矩阵
在向量分析中,雅可比矩阵是函數的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代數群,曲线可以嵌入其中。 它们全部都以数学家卡爾·雅可比命名。.
标准正交基
在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"(Orthonormal basis)。 无论在有限维还是无限维空间中,正交基的概念都是很重要的。在无限维希尔伯特空间中,正交基不再是哈默尔基,也即是说不是每个元素都可以写成有限个基中元素的线性组合。因此在无限维空间中,正交基应该被更严格地定义为由线性无关而且两两正交的元素组成、张成的空间是原空间的一个稠密子空间(而不是整个空间)的集合。 注意,在没有定义内积的空间中,“正交基”一词是没有意义的。因此,一个具有正交基的巴拿赫空间,就是一个希尔伯特空间。.
上面的列表回答下列问题
- 什么列維-奇維塔符號和行列式的共同点。
- 什么是列維-奇維塔符號和行列式之间的相似性
列維-奇維塔符號和行列式之间的比较
列維-奇維塔符號有23个关系,而行列式有134个。由于它们的共同之处9,杰卡德指数为5.73% = 9 / (23 + 134)。
参考
本文介绍列維-奇維塔符號和行列式之间的关系。要访问该信息提取每篇文章,请访问: