列維-奇維塔符號和线性代数
快捷方式: 差异,相似,杰卡德相似系数,参考。
列維-奇維塔符號和线性代数之间的区别
列維-奇維塔符號 vs. 线性代数
列維-奇維塔符號(Levi-Civita symbol),特別在線性代數,張量分析和微分幾何等數學範疇中很常見到,用以表示數字的集合;是對於中某個正整數所形成排列的正負符號來定義。它以義大利數學家和物理學家Tullio Levi-Civita命名。其它名稱包括置換符號,反對稱符號或交替符號,是有關於反對稱的屬性與排列的定義。 希臘小寫字母或是表示列維-奇維塔符號的標準記號,較不常見的也有以拉丁文小寫記號。下標符能與張量分析兼容的方式來顯示排列: 其中每個下標取值為。有個索引值為,可以排成為-維陣列。 這個符號的關鍵定義是全部索引中的完全反對稱性。當任何兩個索引互換、相等或否定時,則符號的正負即有變化: 如果兩個索引相等,則此符號變為0。當全部索引都不相等時,我們有: 其中(稱為排列的奇偶性質)是要將 回復的自然次序時,而索引所需的對換次數,而因子被稱為排列的符號。的值必須有定義,否則所有排列的特定符號值是無法確定的。大多數作者選擇,表示列維-奇維塔符號等於各別索引不相等時的置換符號,在本文中使用這個定義。 “-維列維-奇維塔符號”一詞是指符號上的索引數,和所討論的向量空間維度相符,可以是歐幾里得或非歐幾里得空間,例如,或閔可夫斯基空間。列維-奇維塔符號的值與任何張量和參考座標系無關。此外,特別固定的“符號”強調,它並不因為在座標系之間如何變換而就是某一個張量;然而,它可以被理解為張量的密度。 列維-奇維塔符號讓我們可使用索引符號來表示方陣的行列式,及三維歐幾里德空間中的兩個向量的叉積。. 线性代数是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。 坐标满足线性方程的点集形成n维空间中的一个超平面。n个超平面相交于一点的条件是线性代数研究的一个重要焦点。此项研究源于包含多个未知数的线性方程组。这样的方程组可以很自然地表示为矩阵和向量的形式。 线性代数既是纯数学也是应用数学的核心。例如,放宽向量空间的公理就产生抽象代数,也就出现若干推广。泛函分析研究无穷维情形的向量空间理论。线性代数与微积分结合,使得微分方程线性系统的求解更加便利。线性代数的理论已被泛化为。 线性代数的方法还用在解析几何、工程、物理、自然科学、計算機科學、计算机动画和社会科学(尤其是经济学)中。由于线性代数是一套完善的理论,非线性数学模型通常可以被近似为线性模型。.
之间列維-奇維塔符號和线性代数相似
列維-奇維塔符號和线性代数有(在联盟百科)3共同点: 变换矩阵,張量,行列式。
变换矩阵是数学线性代数中的一个概念。 在线性代数中,线性变换能够用矩阵表示。如果T是一个把Rn映射到Rm的线性变换,且x是一个具有n个元素的列向量,那么 我们把m×n的矩阵A,称为T的变换矩阵。.
列維-奇維塔符號和变换矩阵 · 变换矩阵和线性代数 · 查看更多 »
張量(tensor)是一个可用來表示在一些向量、純量和其他張量之間的線性關係的多线性函数,這些線性關係的基本例子有內積、外積、線性映射以及笛卡儿积。其坐标在 n 維空間內,有 n^r個分量的一種量,其中每個分量都是坐標的函數,而在坐標變換時,這些分量也依照某些規則作線性變換。r稱為該張量的秩或階(与矩阵的秩和阶均无关系)。 在同构的意义下,第零階張量(r.
列維-奇維塔符號和張量 · 張量和线性代数 · 查看更多 »
行列式(Determinant)是数学中的一個函數,将一个n \times n的矩陣A映射到一個純量,记作\det(A)或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现线性自同态和向量组的行列式的定义。 行列式的特性可以被概括为一个交替多线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。.
列維-奇維塔符號和行列式 · 线性代数和行列式 · 查看更多 »
上面的列表回答下列问题
- 什么列維-奇維塔符號和线性代数的共同点。
- 什么是列維-奇維塔符號和线性代数之间的相似性
列維-奇維塔符號和线性代数之间的比较
列維-奇維塔符號有23个关系,而线性代数有115个。由于它们的共同之处3,杰卡德指数为2.17% = 3 / (23 + 115)。
参考
本文介绍列維-奇維塔符號和线性代数之间的关系。要访问该信息提取每篇文章,请访问: