之间几何学和圆相似
几何学和圆有(在联盟百科)10共同点: 埃及,三角形,平面,几何原本,空間,立体几何,美索不达米亚,面积,角,欧几里得。
埃及
阿拉伯埃及共和國(جمهوريّة مصرالعربيّة,),通稱埃及,是東北非洲人口最多的國家,面積為1,001,450平方公里,人口已超過9,000萬。原存在於當地的古埃及是世界文明古國之一。二戰後,埃及于1953年由阿拉伯人建立共和国,地理上該國地跨二洲即亞洲和非洲,西奈半島位於西南亞(西亞),而該國大部分國土位於北非地區。伊斯蘭教為國教。埃及人大部分信仰伊斯兰教遜尼派,最大的宗教少数派为科普特正教。另外還有基督教其他教派和伊斯兰教什叶派;官方語言為阿拉伯語,通用英語和法語。 埃及經濟的多元化程度在中東地區名列前茅。各項重要產業如旅遊業、農業、工業和服務業有著幾乎同等的發展比重。埃及也被認為是一個中等強國,在地中海、中東和伊斯蘭信仰地區尤其有廣泛的影響力。.
三角形
三角形,又稱三邊形,是由三条线段顺次首尾相连,或不共線的三點兩兩連接,所组成的一个闭合的平面图形,是最基本和最少邊的多边形。 一般用大写英语字母A、B和C为三角形的顶点标号;用小写英语字母a、b和c表示边;用\alpha、\beta和\gamma給角標號,又或者以\angle ABC這樣的顶点标号表示。.
平面
数学上,一个平面(plane)就是基本的二维对象。直观的讲,它可以视为一个平坦的拥有无穷大面积的纸。多数几何、三角学和制图的基本工作都在二维进行,或者说,在平面上进行。 给定一个平面,可以引入一个直角坐标系以便在平面上用两个数字唯一的标示一个点,这两个数字也就是它的坐标。 在三维x-y-z坐标系中,可以将平面定义为一个方程的集: 其中a, b, c和d是实数,使得a, b, c不全为0。或者,一个平面也可以参数化的表述,作为所有具有u + s v + t w形式的点的集合,其中s和t取遍所有实数,而u, v 和w是给定用于定义平面的向量。 平面由如下组合的任何一个唯一确定.
几何原本
《几何原本》(Στοιχεῖα)是古希腊数学家欧几里得所著的一部数学著作,共13卷。这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在四庫全書中為子部天文演算法算書類。.
空間
間(Raum,space,espace,espacio,spazio),,抽象化之後形成的概念。與時間二者,構成物質存在的基本範疇,是人類思考的基本概念框架之一。人類可以用直覺了解空間,但難以概念化,因此自古希臘時代開始,就成為哲學與物理學上重要的討論課題。空間存在,是運動構成的基本條件。在物理學中,以三個維度來描述空間的存在。相對論中,將時間及空間二者,合併成單一的時空概念。伽利略、莱布尼兹、艾萨克·牛顿、伊曼努尔·康德、卡爾·弗里德里希·高斯、爱因斯坦、庞加莱都研究空间的本质。.
立体几何
数学上,立体几何(solid geometry,Stereometrie,Στερεομετρία)是三维歐幾里得空間的几何的传统名称。实践上这大致上就是我们生活的空间。一般作为平面几何的后续课程。其研究對象是立体(簡稱体)——占据一定三维空间,具有非零体积的物体。 立体测绘(英语:Stereometry)处理不同形体的体积的测量问题。.
美索不达米亚
美索不达米亚(阿拉米语:ܒܝܬ ܢܗܪܝܢ,Μεσοποταμία,بلاد الرافدين,Mesopotamia)是古希腊对两河流域的称谓,意为“(两条)河流之间的地方”,这两条河指的是幼发拉底河和底格里斯河,在两河之间的美索不达米亚平原上产生和发展的古文明称为两河文明或美索不达米亚文明,它大体位于现今的伊拉克,其存在时间从公元前4000年到公元前2世纪,是人类最早的文明。由于这两条河流每年的氾滥,所以下游土壤肥沃,富含有机物和矿物质,但同时该地气候干旱缺水,所以当地人公元前4000年就开始运用灌溉技术,灌溉为当地带来大规模的人力协作和农业丰产。经过数千年的演化,美索不达米亚于公元前2900年左右形成成熟文字、众多城市及周围的农业社会。 由于美索不达米亚地处平原,而且周围缺少天然屏障,所以在几千年的历史中有多个民族在此经历接触、入侵、融合的过程,苏美尔人、阿卡德人、阿摩利人、亚述人、埃兰人、喀西特人、胡里特人、迦勒底人等其他民族先后进入美索不达米亚,他们先经历史前的欧贝德、早期的乌鲁克、苏美尔和阿卡德时代,后来又建立起先进的古巴比伦和庞大的亚述帝国。迦勒底人建立的新巴比伦将美索不达米亚古文明推向鼎盛时期。但随着波斯人和希腊人的先后崛起和征服,已经辉煌几千年的文字和城市逐步被荒废,接着渐渐为沙尘掩埋,最后被人们所遗忘。直到19世纪中期,伴随考古发掘的开始和亚述学的兴起,越来越多的实物被出土,同时楔形文字逐渐被破解,尘封18个世纪的美索不达米亚古文明才慢慢呈现在当今世人面前。 苏美尔人于公元前3200年左右发明的楔形文字、公元前2100年左右尼普尔的书吏学校、三四千年前苏美尔人和巴比伦人的文学作品、2600多年前藏有2.4万块泥板书的亚述巴尼拔图书馆、有前言和后记及282条条文构成的《汉谟拉比法典》、有重达30多吨的人面带翼神兽守卫的亚述君王宫殿、古巴比伦人关于三角的代数的运算、公元前747年巴比伦人对日食和月蚀的准确预测、用琉璃砖装饰的新巴比伦城和传说中的巴别塔和巴比伦空中花园,以及各时期的雕塑和艺术品,这些成就都属于美索不达米亚这个古老的文明。.
几何学和美索不达米亚 · 圆和美索不达米亚 ·
面积
面積是一個用作表示一個曲面或平面圖形所佔範圍的量,可看成是長度(一維度量)及體積(三維度量)的二維類比。對三維立體圖形而言,圖形的邊界的面積稱為表面積。 計算各基本平面圖形面積及基本立體圖形的表面積公式早已為古希臘及古中國人所熟知。 面積在近代數學中佔相當重要的角色。面積除與幾何學及微積分有關外,亦與線性代數中的行列式有關。在分析學中,平面的面積通常以勒貝格測度(Lebesgue measure)定義。 我們可以利用公理,將面積定義為一個由平面圖形的集合映射至實數的函數。.
角
在几何学中,角(拼音:jiǎo,注音符號:ㄐㄧㄠˇ)是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角會假設在欧几里得平面上,但在非欧几里得几何中也可以定義角,特別是在球面幾何學中的是用大圓的圓弧代替射线。角在几何学和三角学中有着广泛的应用。 几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。普罗克鲁斯認為角可能是一種特質、一種可量化的量、或是一種關係。認為角是相對一直線的偏差,認為角是二條相交直線之間的空間。欧几里得認為角是一種關係,不過他對直角、銳角或鈍角的定義都是量化的。 平面角的大小定义是以两射线交点为圆心的圆被射线所截的弧长与半径之比,单位包括弧度和度、分、秒等。.
欧几里得
欧几里得(Ευκλειδης,前325年—前265年),有时被称为亚历山大里亚的欧几里得,以便区别于墨伽拉的欧几里得,希腊化时代的数学家,被稱為「几何學之父」。他活躍於托勒密一世時期的亚历山大里亚,也是亚历山太学派的成员。他在著作《几何原本》中提出五大公設,成為欧洲数学的基础。歐幾里得也寫過一些關於透視、圓錐曲線、球面幾何學及數論的作品。歐幾里得幾何被广泛的认为是數學領域的經典之作。.
上面的列表回答下列问题
- 什么几何学和圆的共同点。
- 什么是几何学和圆之间的相似性
几何学和圆之间的比较
几何学有142个关系,而圆有62个。由于它们的共同之处10,杰卡德指数为4.90% = 10 / (142 + 62)。
参考
本文介绍几何学和圆之间的关系。要访问该信息提取每篇文章,请访问: