徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
自由
比浏览器更快的访问!
 

共价半径和锝

快捷方式: 差异相似杰卡德相似系数参考

共价半径和锝之间的区别

共价半径 vs. 锝

共价半径定义为由共价键结合的两个原子核之间距离的一半,單位通常使用皮米(pm)或埃(Å)。He、Ne、Ar等原子无共价半径数据,因至今未合成其任何共价化合物。 同周期元素的单键共价半径的变化规律为从左至右逐渐缩小,可认为是原子核对电子引力增大的缘故。. 锝(--)是一種化學元素,其原子序數是43,化學符號是Tc。其所有同位素都具有放射性,是原子序最小的非穩定元素。地球上現存的大部分鍀都是人工製造的,自然界中僅有極少量存在。在鈾礦中,鍀是一種自發裂變產物;在鉬礦石中,鉬經中子俘獲后可以生成鍀。鍀是一種銀灰色的金屬晶體,其化學性質介於錳和錸之間。 在鍀發現以前,德米特里·門捷列夫就已經預測了它的許多性質。在他的周期表中,門捷列夫把這種尚未發現的元素叫做“類錳”,符號為Em。1937年,鍀(準確的說是鍀-97)成為第一個大部分由人工製造的元素。它的英文名來自希腊語τεχνητός,意為“人造”。 鍀的短壽命同位素鍀-99m具有γ放射性,廣泛用於核醫學。鍀-99僅具有β放射性。商業上,鍀的長壽命同位素是反應堆中鈾-235裂變的副產物,可以從乏燃料中提取得到。鍀最長壽命的同位素是鍀-98(半衰期為420萬年)。1952年,有人在壽命超過十億年的紅巨星中發現了鍀-98,讓人們認識到恆星可以製造重元素。.

之间共价半径和锝相似

共价半径和锝有(在联盟百科)25共同点: 共价键锕系元素

共价键

共价键(Covalent Bond),是化学键的一种。两个或多个非金屬原子共同使用它们的外层电子(砷化鎵為例外),在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,比离子键小。 同一種元素的原子或不同元素的原子都可以通過共​​價鍵結合,一般共價鍵結合的產物是分子,在少數情況下也可以形成晶體。 吉爾伯特·路易斯于1916年最先提出共价键。 在简单的原子轨道模型中进入共价键的原子互相提供单一的电子形成电子对,这些电子对围绕进入共价键的原子而属它们共有。 在量子力学中,最早的共价键形成的解释是由电子的复合而构成完整的轨道来解释的。第一个量子力学的共价键模型是1927年提出的,当时人们还只能计算最简单的共价键:氢气分子的共价键。今天的计算表明,当原子相互之间的距离非常近时,它们的电子轨道会互相之间相互作用而形成整个分子共用的电子轨道。.

共价半径和共价键 · 共价键和锝 · 查看更多 »

硫是一种化学元素,在元素周期表中它的化学符号是S,原子序数是16。硫是一种非常常见的无味无臭的非金属,纯的硫是黄色的晶体,又稱做硫黄、硫磺。硫有许多不同的化合价,常見的有-2, 0, +4, +6等。在自然界中常以硫化物或硫酸盐的形式出现,尤其在火山地区纯的硫也在自然界出现。硫单质难溶于水,微溶于乙醇,易溶于二硫化碳。对所有的生物来说,硫都是一种重要的必不可少的元素,它是多种氨基酸的组成部分,尤其是大多数蛋白质的组成部分。它主要被用在肥料中,也廣泛地被用在火药、潤滑劑、殺蟲劑和抗真菌剂中。.

共价半径和硫 · 硫和锝 · 查看更多 »

是化学元素,化学符号是Se,原子序数是34,是非金属。 硒對生物來說是必需,但同時也有毒性。硒的性质与硫及碲相似;在有光时,导电性能较黑暗时好,故可用来做光电池。.

共价半径和硒 · 硒和锝 · 查看更多 »

(),是化学元素,化学符号是Te,原子序数是52,是银白色的类金属。 碲的化学性质与硒及硫类似。主要用作合金及半导体。碲化铋用作热电装置中。 碲-128及碲-130是最常见的碲同位素,但它们都有微弱的放射性。 碲是制造碲化镉太阳能薄膜电池的主要原料。 碲矿资源分布稀散,多伴生在其它矿物中或以杂质形式存在于其它矿中。中国四川石棉县大水沟碲矿是至今发现的唯一碲独立矿床。.

共价半径和碲 · 碲和锝 · 查看更多 »

碳(Carbon,拉丁文意為煤炭)是一種化學元素,符號為C,原子序数為6,位於元素週期表中的IV A族,屬於非金屬。每個碳原子有四顆能夠進行鍵合的電子,因此其化合價通常為4。自然產生的碳由三種同位素組成:12C和13C為穩定同位素,而14C則具放射性,其半衰期約為5,730年。碳是少數幾個自遠古就被發現的元素之一(見化學元素發現年表)。 碳的同素異形體有數種,最常見的包括:石墨、鑽石及無定形碳。這些同素異形體之間的物理性質,包括外表、硬度、電導率等等,都具有極大的差異。在正常條件下,鑽石、碳納米管和石墨烯的熱導率是已知材質中最高的。 所有碳的同素異形體在一般條件下都呈固态,其中石墨的熱力學穩定性最高。它們不易受化學侵蝕,甚至連氧都要在高溫下才可與其反應。碳在無機化合物中最常見的氧化態為+4,並在一氧化碳及過渡金屬羰基配合物中呈+2態。無機碳主要來自石灰石、白雲石和二氧化碳,但也大量出現在煤、泥炭、石油和甲烷水合物等有機礦藏中。碳是所有元素中化合物种类最多的,目前有近一千萬種已記錄的純有機化合物,但這只是理論上可以存在的化合物中的冰山一角。 碳的豐度在地球地殼中排列第15(见地球的地殼元素豐度列表),並在全宇宙中排列第4(见化學元素豐度),名列氫、氦和氧之下。由於碳元素極為充沛,再加上它在地球環境下所能產生的聚合物種類極為繁多,因此碳是地球上所有生物的化學根本。.

共价半径和碳 · 碳和锝 · 查看更多 »

钯是一种化学元素,化学符号為Pd,原子序数46。鈀的拉丁名稱Palladium是以小行星智神星來命名的,另一種以小行星來命名的元素是鈰。 鈀是一種罕見的、有光澤的銀白色金屬,鈀與鉑、銠、釕、銥、鋨形成一組鉑族金屬的元素家族。鉑族金屬化學性質相似,但鈀的熔點最低,是這些貴金屬中密度最低的一种。 在实验室裡,经常把一氧化碳通入稀氯化钯溶液中来制取钯: PdCl_ + CO+H_O.

共价半径和钯 · 钯和锝 · 查看更多 »

钷(Promethium)為一化学元素,化学符号為Pm,原子序61,属于镧系元素與稀土元素,它所有同位素皆帶有放射性,半衰期最长只有17.7年,故常以人工合成的方法制得。 在原子序82号(鉛)以前只有两个元素没有稳定的同位素,其中一个即為鉕,另一个是锝。在化學上,钷是一種鑭系元素,會與其他元素形成鹽類。钷會以+3氧化態形成穩定的鹽,但是也有少數化合物中存在+2的钷。 在1902年時,预测在當時已知的釹(60)和釤(62)之間存在一個與它們性質相似的未知元素。1914年,亨利·莫塞萊利用原子序與原子核電荷之間的關係(莫塞萊定律),確認當時還未知的61號元素確實存在。不過他測定當時所有已知元素的原子序,却發現沒有任何元素的原子序是61。 1926年,兩個義大利佛羅倫薩的化學家声称他們發現了第61號元素,將其命名為Florentium(中文譯作鉘);同年,一批美國伊利諾大學的化學家亦宣布61號元素的發現,將其命名為Illinium(中文譯作鉯),但這兩個發現都被證實是錯誤的。 1938年,俄亥俄州立大學在進行核試驗的過程中,產生了一些放射性元素,且已确定不是釹或釤的放射性同位素。但此發現因缺乏化學證據證明那是61號元素,所以并沒有得到普遍的認可。1945年,美國橡樹嶺國家實驗室利用離子交換層析法(IEC)分析石墨核子反應堆中的鈾(235U)衰變產物,才真正发现並確認钷的存在。發現者原本打算以研究機構的名稱將之命名為Clintonium(源自橡樹嶺國家實驗室的前身柯林頓實驗室),但之後提出的名稱為“Prometheum”(現改變為Promethium),來自普羅米修斯(祂在希臘神話中偷走了火,從奧林匹斯山帶给人類),以象徵“大膽”以及“人類才智的濫用”。第一件钷的金屬樣本於1963年被制造出來。 自然钷有兩個可能的來源:銪-151衰變(產生钷-147),和鈾(產生各種同位素)。實際應用方面,虽然钷-145是最穩定的钷同位素,但只有钷-147的化合物有实际运用,用於夜光漆,核電池和厚度測量裝置。钷在自然界非常稀有,製作钷常用的方法是用熱中子轟擊鈾-235(濃縮鈾)来產生钷-147。.

共价半径和钷 · 钷和锝 · 查看更多 »

钼(Molybdenum)是一种化学元素,它的化学符号是Mo,它的原子序数是42,是一种灰色的过渡金属。Molybdenum 来自新拉丁语 molybdaenum,后者来自古希臘語 Μόλυβδος molybdos,意思是铅,因为钼矿石与铅矿石被混淆了。钼矿石在历史上被人们所熟知,但该元素的发现(即从其它金属中区分出来)是在1778年,由 卡尔·威廉·舍勒识别出来。该金属在1781年第一次被彼得·雅各·耶尔姆分离得出。 钼在地球上没有自然金属的形态,但是在矿物中以各种氧化物的形式出现。在单体元素形式中,钼是一种灰色金属,呈灰口铸铁颜色,是所有元素中熔点排名第六高。它很容易在合金中形成坚硬、稳定的碳化物,因此,世界上大多数钼产品(约80%)都被用作某种铁合金,包括高强度合金和高温合金。 大多数钼化合物在水中微溶,但是当含钼的矿物与氧气和水接触时可以形成钼离子。在工业上,钼化合物(世界上约有14%的产品)被用于高压和高温应用品,如色素或催化剂等。 目前,一些细菌在打破大气氮分子的化学键上最常用的催化剂是含钼酶,能起到生物固氮作用。在细菌和动物中,虽然只有细菌和蓝藻酶会参与到固氮活动中,但已知的含钼酶至少有50种。这些固氮酶含钼的形式与其它含钼酶不同,但都有氧化形式的钼,用以搭配钼辅因子。由于钼的各种辅因子酶的多样功能,钼成为所有高于真核生物组织的膳食矿物质,虽然并非所有细菌都用到钼。.

共价半径和钼 · 钼和锝 · 查看更多 »

鉭(Tantalum,舊譯作鐽)是一種化學元素,符號為Ta,原子序為73。其名稱「Tantalum」取自希臘神話中的坦塔洛斯。鉭是一種堅硬藍灰色的稀有過渡金屬,抗腐蝕能力極強。鉭屬於難熔金屬,常作為合金的次要成份。鉭的化學活性低,適宜代替鉑作實驗器材的材料。目前鉭的最主要應用為鉭電容,在手提電話、DVD播放機、電子遊戲機和電腦等電子器材中都有用到。鉭在自然中一定與化學性質相近的鈮一齊出現,一般在鉭鐵礦、鈮鐵礦和鈳鉭鐵礦中可以找到。.

共价半径和钽 · 钽和锝 · 查看更多 »

钌是一种化学元素,它的化学符号是Ru,它的原子序数是44。 它的英文名称是羅塞尼亞的意思。钌是在1844年由波羅的海德裔俄国科学家Karl Ernst Claus发现的。 钌是硬质的银白色的过渡金属。钌可在铂矿中发现,仅在高温时才能加工。亦在一些铂合金中用作催化剂。.

共价半径和钌 · 钌和锝 · 查看更多 »

釔()是化學元素,符號為Y,原子序為39,是銀白色過渡金屬,化學性質與鑭系元素相近,且常歸為稀土金屬。釔在自然中並不單獨出現,而是和鑭系元素結合出現在稀土礦中。89Y是釔的唯一一種穩定同位素和自然同位素。 1787年,在瑞典伊特比附近發現了一種新的礦石,即,並根據發現地村落的名稱將它命名為「Ytterbite」。在1789年於阿列紐斯的礦物樣本中,發現了氧化釔。把這一氧化物命名為「Yttria」。弗里德里希·維勒在1828年首次分離出釔的單質。 釔的最大用途在於磷光體的生產,特別是紅色LED和電視機陰極射線管(CRT)顯示屏的紅色磷光體。釔元素也被用於電極、電解質、電子濾波器、激光器和超導體中,也有多項醫學和材料科學上的應用。釔沒有已知的生物用途,人類接觸釔元素可導致肺病。.

共价半径和钇 · 钇和锝 · 查看更多 »

铁是一种化学元素,它的化学符号是Fe,它的原子序数是26,它的相对原子质量是56。它是过渡金属的一种。铁是最常用的金属,是地球外核及內核的主要成份,是地殼上豐度第四高的元素和第二高的金屬。鐵常出現在类地行星中,因為鐵是高質量恆星核融合後的產物,鎳-56是放熱核融合反應的最後一個產物,之後會衰變成最常見的鐵同位素。 铁和其他8族元素相同,其氧化態範圍很廣,由−2到+6,但其中+2和+3是最常見的氧化態。在流星体及低氧的環境下,鐵會以单质的形式存在,但是鐵很容易和氧氣和水反應。鐵的表面是有光澤的銀灰色,但在空氣中鐵會反應生成水合的氧化鐵,一般稱為铁锈。許多金屬在氧化後會形成钝化的氧化層,保護內部的金屬不被氧化,但氧化鐵的密度較鐵要低,因此氧化鐵會剝落,無法保護內部的鐵不受腐蝕。.

共价半径和铁 · 铁和锝 · 查看更多 »

銥是化學元素,符號為Ir,原子序為77,屬於鉑系過渡金屬,为質地堅硬易碎的銀白色固体。銥是所有元素中密度第二高的元素(僅次於鋨),而其耐腐蝕性是所有金屬元素中最高,在2000℃高溫下仍然能抵抗腐蝕。雖然固態銥只能受少數熔融鹽和鹵素侵蝕,但是銥粉末则相比之下較容易发生化学反应,可以燃燒。 1803年,史密森·特南特在自然鉑礦石的不可溶雜質中發現了銥元素。由於該元素的鹽有眾多鮮豔的顏色,所以他根據希臘神話的彩虹女神伊里斯(Iris)把這新元素命名為「Iridium」。銥是地球地殼中最稀有的元素之一。其全球年產量及年消耗量只有三噸。自然存在的銥有191Ir和193Ir两种同位素,後者的丰度較高。銥的其他同位素都是不穩定同位素。 最有實用價值的銥化合物包括其與氯所產生的鹽和酸。銥還可以形成多種有機金屬化合物,用於工業催化反應和科學研究。銥金屬可用作高耐蝕性高溫工具的材料,用於製造火花塞、高溫半導體再結晶過程所用的坩堝以及氯鹼法所用的電極等等。一些放射性同位素熱電機也有用到銥的放射性同位素。 一些隕石的含銥量比地壳的平均銥含量高出許多。K-T界線(白堊紀-第三紀界線)黏土層上的銥含量異常高,因此科學家提出了有關6600萬年前大型天體撞擊地球導致恐龍等許多物種滅絕的假說,這一滅絕事件稱為白堊紀-第三紀滅絕事件。根據估算,地球中銥的總含量應比地殼中的銥含量要高很多。但與其他鉑系金屬一樣,銥密度高,且容易與鐵結合,因此在地球形成後不久、仍處於熔融狀態時,大部份銥都已沉到地底深處。.

共价半径和铱 · 铱和锝 · 查看更多 »

錸是一種化學元素,符號為Re,原子序為75。錸是種銀白色的重金屬,在元素週期表中屬於第6週期過渡金屬。它是地球地殼中最稀有的元素之一,平均含量估值為十億分之一,同時也是熔點和沸點最高的元素之一。錸是鉬和銅提煉過程的副產品。其化學性質與錳和鍀相似,在化合物中的氧化態最低可達−3,最高可達+7。 科學家在1925年發現了錸元素,因此它成為了最後被發現的穩定元素。其名稱(Rhenium)取自歐洲的萊茵河。 鎳錸高溫合金可用於製造噴氣發動機的燃燒室、渦輪葉片及排氣噴嘴。這些合金最多含有6%的錸,這是錸最大的實際應用,其次就是作為化工產業中的催化劑。錸比鑽石更難取得,所以價格高昂,2011年8月平均每公斤售4,575美元(每金衡盎司142.30美元)。由於錸可應用在高效能噴射引擎及火箭引擎,所以在軍事戰略上十分重要。.

共价半径和铼 · 铼和锝 · 查看更多 »

鈮(IUPAC名:niobium,化學符号:Nb) 是原子序為41的化學元素,曾有舊稱鈳(Columbium,化學符号:Cb)原在美洲使用,1949年IUPAC決定採歐洲使用的名稱。鈮是一種質軟的灰色可延展過渡金屬,一般出現在和中。其命名來自希臘神話中的尼俄伯,即坦塔洛斯之女。 鈮的化學和物理性質與鉭元素相近,因此兩者很難區分開來。英國化學家查理斯·哈契特在1801年宣佈發現一種近似於鉭的新元素,並將它命名為「Columbium」(鈳)。1809年,英國化學家威廉·海德·沃拉斯頓錯誤地把鉭和鈳判定為同一個元素。德國化學家海因里希·羅澤在1846年得出結論,指鉭礦物中確實存在另一種元素,他將其命名為「Niobium」(鈮)。在1864至1865年進行的一系列研究最终确认,鈮和鈳實為同一元素,與鉭則是不同的元素。接下來的一個世紀內,兩種稱呼都被廣泛通用。1949年,鈮成為了這一元素的正式命名,但美國至今仍在冶金學文獻中使用舊名「鈳」。 鈮直到20世紀初才開始有商業應用。巴西是目前鈮和鐵鈮合金的最大產國。鈮一般被用於製作合金,最重要的應用在特殊鋼材,例如天然氣運輸管道材料。雖然這些合金的含鈮量不會超過0.1%,但加入少量的鈮即可達到強化鋼材的作用。含鈮的高溫合金具有高溫穩定性,對製造噴射引擎和火箭引擎非常有用。鈮是第II類超導體的合金成份。這些超導體也含有鈦和錫,被廣泛應用在核磁共振成像掃描儀作超導磁鐵。 鈮的毒性低,亦很容易用陽極氧化處理進行上色,所以被用於錢幣和首飾。鈮的其他應用範疇還包括焊接、核工業、電子和光學等。.

共价半径和铌 · 铌和锝 · 查看更多 »

铑(舊譯錴)符号Rh,元素之一,原子序45,只有一个穩定的同位素103Rh。由威廉 · 海德伍拉斯顿于1803年发现,并以其一种玫瑰色的氯化合物命名,可由该化合物于王水反应而得.英文Rhodium的希腊语意为"玫瑰"。 铑是坚硬的银白色过渡金属,耐腐蚀,可在铂矿发现,十分稀有,亦在一些铂合金中用作催化剂。.

共价半径和铑 · 铑和锝 · 查看更多 »

鉑(Platinum),化學元素,俗稱白金,化學符號為Pt,原子序為78。鉑密度高、延展性高、反應性低的灰白色貴金屬,屬於過渡金屬。 鉑同屬於鉑系元素和10族元素。它共有六種自然產生的同位素。鉑是地球地殼中罕見的元素,丰度排在第71名,平均豐度大約為5 μg/kg,地壳百万分之0.001为铂。它一般出現在某些鎳和銅礦石中,位於原生元素礦藏,主要分佈在南非,當地的鉑產量佔全球的80%。鉑年產量只有幾百噸,應用亦十分重要,因此非常貴重,是主要的貴金屬貿易商品。 鉑是非常不活泼的金屬。即便在高溫下,它也有極強的抗腐蝕性,屬於抗腐蝕金屬。在自然中,鉑有時以純金屬狀態出現,不與其他元素結合。鉑自然出現在河流的沖積層中,所以前哥倫布時期的南美原住民最早用鉑制作工藝品。歐洲最早在16世紀就有記載使用鉑;1748年,安東尼奧·烏略亞發表報告,描述此來自哥倫比亞的新金屬,這時科學家才開始研究鉑元素。 鉑的應用包括:催化轉換器、實驗室器材、電觸頭和電極、電阻溫度計、牙科器材及首飾等。由於鉑是重金屬,所以它的鹽會危害健康;但鉑的抗腐蝕性強,所以其毒性比一些其他金屬較低。一些含鉑化合物,特別是順鉑,可用於化學療法以治療某些癌症。.

共价半径和铂 · 铂和锝 · 查看更多 »

锰(manganese)是一种化学元素,它的化学符号是Mn,它的原子序数是25,是一种过渡金属。.

共价半径和锰 · 锝和锰 · 查看更多 »

鋦(Curium)是一種放射性超鈾元素,符號為Cm,原子序為96,屬於錒系元素,以研究放射性的科學家瑪莉·居禮(Marie Curie)和其丈夫皮埃爾·居禮命名。伯克利加州大學的格倫·西奧多·西博格等人在1944年7月首次專門合成鋦元素。發現起初被列為機密,到1945年11月才公佈於世。大部分的鋦是在核反應爐中通過對鈾或鈈進行中子撞擊產生的。每噸用盡的核燃料中含有大約20克鋦。 鋦是一種銀白色的堅硬高密度金屬,熔點和沸點是錒系元素中較高的。鋦在標準溫度和壓力下具順磁性,並在冷卻後變為反鐵磁性;許多鋦化合物也具有磁性的轉變。鋦在化合物中的氧化態通常為+3和+4,而在溶液中主要呈+3態。鋦很容易被氧化,而形成的氧化物是鋦最常見的形態。鋦可以和各種有機化合物形成螢光配合物,但不出現在任何細菌或古菌中。當攝入人體之後,鋦會累積在骨骼、肺部和肝臟中,並可致癌。 鋦的所有已知同位素都具有放射性,並具有較小的臨界質量(維持核連鎖反應所需的最低質量)。這些同位素主要放射α粒子,輻射釋放的熱量可以在放射性同位素熱電機中用來產生電力。然而由於量的稀少,以及製造費用的昂貴,鋦難以用來發電。鋦被用於製造更重的錒系元素,及在心律調節器中作為能源的238Pu放射性同位素。它也作為α粒子射源,被用在α粒子X射線光譜儀中。許多火星探測任務都使用該光譜儀來分析火星表面岩石的結構和成份,羅塞塔號的菲萊登陸器(Philae Lander)也用它來探測楚留莫夫-格拉希門克彗星的表面。.

共价半径和锔 · 锔和锝 · 查看更多 »

锕系元素

锕系元素以第Ⅲ族副族元素锕为首的一系列元素,是原子序数第89元素锕到第103元素铹,共15种放射性元素,在周期表中占有一个特殊位置。 锕系元素的名稱是因為3族元素锕,有時也會符號An表示锕系元素。锕系元素絕大部份是f區元素,最高能量的電子是在5f電子層,锕系元素只有鐒是d區元素。鑭系元素中大部份也一様是f區元素,不過相較起來,锕系元素的化合價有較多的變化。 锕系元素原子基態的電子構型是5f0~146d0~17s2,这些元素的核外电子分为7层,最外层都是2个电子,次外层多数为8个电子(个别为9或10个电子),从镤到锘电子填入第5层,使第5层电子数从18个增加到32个。 1789年德国馬丁·克拉普羅特从沥青铀矿中发现了铀,它是被人们认识的第一个锕系元素。其后陆续发现了锕、钍和镤。铀以后的元素都是在1940年后用人工核反应合成的,稱為人工合成元素。.

共价半径和锕系元素 · 锕系元素和锝 · 查看更多 »

鋂(Americium,--)是一種放射性超鈾元素,符號為Am,原子序為95。鋂屬於錒系元素,在元素週期表中位於鑭系元素銪之下。鋂是以發現所在的美洲大陸(America)命名的。 位於伯克利加州大學由格倫·西奧多·西博格領導的團隊在1944年首次合成了鋂元素。雖然鋂是第三個超鈾元素,但它卻是繼鋦以後第四個被發現的超鈾元素。這項發現最初被列爲機密,直到1945年才公諸於世。大部分的鋂都是在核反應爐中以中子撞擊鈾或鈈而形成的:一噸乏核燃料含有大約100克鋂。鋂元素主要用在商業電離煙霧探測器和儀表中,或用作中子源。有人提出用242mAm同位素製造核電池和太空船的核推進燃料,但因該同核異構體的稀少和昂貴而尚待實現。 鋂是一種質軟的放射性金屬,外表呈銀白色。鋂的同位素中最常見的有241Am和243Am。在化合物中,特別是溶液中,鋂的氧化態通常是+3。鋂還有+2到+7之間的其他氧化態,可通過測量吸收光譜分辨出來。由於輻射變晶效應,鋂固體和鋂化合物的晶體結構本身含有缺陷。這些缺陷隨時間而增加,因此其物質屬性會進行變化。.

共价半径和镅 · 锝和镅 · 查看更多 »

氫是一種化學元素,其化學符號為H,原子序為1。氫的原子量為,是元素週期表中最輕的元素。單原子氫(H)是宇宙中最常見的化學物質,佔重子總質量的75%。等離子態的氫是主序星的主要成份。氫的最常見同位素是「氕」(此名稱甚少使用,符號為1H),含1個質子,不含中子;天然氫還含極少量的同位素「氘」(2H),含1個質子和1個中子。 氫原子最早在宇宙復合階段出現並遍佈全宇宙。在標準溫度和壓力之下,氫形成雙原子分子(分子式為H2),呈無色、無臭、無味非金屬氣體,不具毒性,高度易燃。氫很容易和大部份非金屬元素形成共價鍵,所以地球上大部份的氫都以分子的形態存在,比如水和有機化合物等。氫在酸鹼反應中尤其重要,因為在這類反應中各種分子須互相交換質子。在離子化合物中,氫原子可以獲得一個電子成為氫陰離子(H−),或失去一個電子成為氫陽離子(H+)。雖然在一般寫法中,氫陽離子就是質子,但在實際化合物中,氫陽離子的實際結構是更為複雜的。氫原子是唯一一個有薛定諤方程式解析解的原子,所以對氫原子模型的研究在量子力學的發展過程中起到了關鍵的作用。 16世紀,人們通過混合金屬和強酸,首次製備出氫氣。1766至1781年,亨利·卡文迪什第一次發現氫氣是一種獨立的物質,燃燒後會產生水。安東萬-羅倫·德·拉瓦節根據這一性質,將其命名為「Hydrogen」,在希臘文中意為「生成水的物質」。19世纪50年代,英国医生合信编写《博物新编》(1855年)时,把元素名翻译为“轻气”,成為今天中文「氫」字的來源。 氫氣的工業生產主要使用天然氣的蒸汽重整過程,或通過能源消耗更高的水電解反應。大部份的氫氣都在生產地點直接使用,主要應用包括化石燃料處理(如裂化反應)和氨生產(一般用於化肥工業)。在冶金學上,氫氣會對許多金屬造成氫脆現象,使運輸管和儲存罐的設計更加複雜。.

共价半径和氢 · 氢和锝 · 查看更多 »

氧(IUPAC名:Oxygen)是一種化學元素,符號為O,原子序為8,在元素週期表中屬於氧族。氧屬於非金屬,是具有高反應性的氧化劑,能夠與大部分元素以及其他化合物形成氧化物。氧在宇宙中的總質量在所有元素中位列第三,僅居氫和氦之下。Emsley 2001, p.297在標準溫度和壓力下,兩個氧原子会自然鍵合,形成無色無味的氧氣,即雙原子氧()。氧氣是地球大氣層的主要成分之一,在體積上佔20.8%。地球地殼中近一半的質量都是由氧和氧化物所組成。 氧是細胞呼吸作用中重要的元素。在生物體中,主要有機分子,如蛋白質、核酸、碳水化合物和脂肪等,還有組成動物外殼、牙齒和骨骼的無機化合物,都含有氧原子。生物體絕大部分的質量都由含氧原子的水組成。光合作用利用陽光的能量把水和二氧化碳轉化為氧氣。氧氣的化學反應性強,容易與其他元素結合,所以大氣層中的氧氣成分只能通過生物的光合作用持續補充。臭氧()是氧元素的另一種同素異構體,能夠較好地吸收中紫外線輻射。位於高海拔的臭氧層有助阻擋紫外線,從而保護生物圈。不過,在地表上的臭氧屬於污染物,為霧霾的副產品之一。在低地球軌道高度的單原子氧足以對航天器造成腐蝕。 卡爾·威廉·舍勒於1773年或之前在烏普薩拉最早發現氧元素。約瑟夫·普利斯特里亦於1774年在威爾特郡獨立發現氧,因為其成果的發表日期較舍勒早,所以一般被譽為氧的發現者。1777年,安東萬-羅倫·德·拉瓦節進行了一系列有關氧的實驗,推翻了當時用於解釋燃燒和腐蝕的燃素說。他也提出了氧的現用IUPAC名稱「oxygen」,源自希臘語中的「ὀξύς」(oxys,尖銳,指酸)和「-γενής」(-genes,產生者)。這是因為命名之時,人們曾以為所有酸都必須含有氧。許多化學詞彙都在清末傳入中國,其中原法文元素名「oxygène」被譯為「養」,後譯為「氱」,最終演變為今天的中文名「氧」。 氧的應用包括暖氣、內燃機、鋼鐵、塑料和布料的生產、金屬氣焊和氣割、火箭推進劑、及航空器、潛艇、載人航天器和潛水所用的生命保障系統。.

共价半径和氧 · 氧和锝 · 查看更多 »

氪是一种化学元素,化学符号是Kr,原子序数是36,是一种无色、无臭、无味的惰性气体,把它放电时呈橙红色,在大气中含有痕量,可通过分馏从液态空气中分离,常用于制作荧光灯。氪正如其他惰性气体一样,不易与其他物质产生化学作用,已知的化合物有二氟化氪(KrF2)。 正如其他惰性气体,氪可用于照明和摄影。氪发出的光有大量谱线,并大量以等离子体的形态释出,这使氪成为制造高功率气体激光器的重要材料,另外也有特制的氟化氪激光。氪放电管功率高、操作容易,因此在1960年至1983年间,一米的定义是用氪86發出的橙色谱线作为基准的。.

共价半径和氪 · 氪和锝 · 查看更多 »

溴,是一個化學元素及一種鹵素;元素符號Br,原子序35。溴分子在標準溫度和壓力下是有揮發性的紅棕色液體,活性介於氯與碘之間。纯溴也称溴素。溴蒸氣具有腐蝕性,并且有毒。在2007年,約有556,000公噸的溴被製造。Jack F. Mills "Bromine" in Ullmann's Encyclopedia of Chemical Technology Wiley-VCH Verlag; Weinheim, 2002.

共价半径和溴 · 溴和锝 · 查看更多 »

上面的列表回答下列问题

共价半径和锝之间的比较

共价半径有124个关系,而锝有187个。由于它们的共同之处25,杰卡德指数为8.04% = 25 / (124 + 187)。

参考

本文介绍共价半径和锝之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »