我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

佩尔·马丁-洛夫和类型论

快捷方式: 差异相似杰卡德相似系数参考

佩尔·马丁-洛夫和类型论之间的区别

佩尔·马丁-洛夫 vs. 类型论

佩尔·埃里克·罗格·马丁-洛夫(Per Erik Rutger Martin-Löf,),瑞典逻辑学家、数理统计学家和哲学家。他以其在概率论基础方面的工作而闻名。自20世纪70年代以后,他的工作主要集中在逻辑学方面。在哲学逻辑方面,他的研究专注于蕴涵及判断学说,并在一定程度上受到了弗朗兹·布伦塔诺、弗雷格和胡塞尔先前工作的影响;在数理逻辑方面,他致力于创设直觉类型论作为数学的构造性基础。马丁-洛夫在类型论方面的工作深深地影响了计算机科学、尤其是后世编程语言理论的发展。 佩尔·马丁-洛夫是斯德哥尔摩大学的校友。直到2009年退休前,他一直担任斯德哥尔摩大学的数学和哲学学院的联合主席这一职务。, Academia Europaea, retrieved 2014-01-26. 在最广泛的层面上,类型论是关注把实体分类到叫做类型的搜集中的数学和逻辑分支。在这种意义上,它与类型的形而上学概念有关。现代类型论在部分上是响应罗素悖论而发明的,并在伯特兰·罗素和阿弗烈·诺夫·怀海德的《数学原理》中起到重要作用。 在计算机科学分支中的编程语言理论中,类型论提供了设计分析和研究类型系统的形式基础。实际上,很多计算机科学家使用术语“类型论”来称呼对编程语言的类型语言的形式研究,尽管有些人把它限制于对更加抽象的形式化如有类型lambda演算的研究。.

之间佩尔·马丁-洛夫和类型论相似

佩尔·马丁-洛夫和类型论有(在联盟百科)7共同点: 系统F直觉类型论计算机科学逻辑逻辑框架构造演算数学

系统F

系统F,也叫做多态lambda演算或二阶lambda演算,是有类型lambda演算。它由逻辑学家Jean-Yves Girard和计算机科学家John C. Reynolds独立发现的。系统F形式化了编程语言中的参数多态的概念。 正如同lambda演算有取值于(rang over)函数的变量,和来自它们的粘合子(binder);二阶lambda演算取值自类型,和来自它们的粘合子。 作为一个例子,恒等函数有形如A→ A的任何类型的事实可以在系统F中被形式化为判断 这里的α是类型变量。 在Curry-Howard同构下,系统F对应于二阶逻辑。 系统F,和甚至更加有表达力的lambda演算一起,可被看作Lambda立方体的一部分。.

佩尔·马丁-洛夫和系统F · 类型论和系统F · 查看更多 »

直觉类型论

觉类型论、或构造类型论、或Martin-Löf 类型论、或就叫类型论是基于数学构造主义的函数式编程语言、逻辑和集合论。直觉类型论由瑞典数学家和哲学家 Per Martin-Löf 在1972年介入。 Martin-Löf 已经多次修改了它的提议;先是非直谓性的而后是直谓性的,先是外延的而后是内涵的类型论变体。 直觉类型论基于的是命题和类型的同一: 一个命题同一于它的证明的类型。这种同一通常叫做Curry-Howard同构,它最初公式化了命题逻辑和简单类型 lambda 演算。类型论通过介入包含着值的依赖类型把这种同一扩展到谓词逻辑。类型论内在化了 Brouwer、Heyting 和 Kolmogorov 提议的叫做 BHK释义的直觉逻辑释义。类型论的类型扮演了类似于集合在集合论的角色,但是在类型论中的函数总是可计算的。.

佩尔·马丁-洛夫和直觉类型论 · 直觉类型论和类型论 · 查看更多 »

计算机科学

计算机科学用于解决信息与计算的理论基础,以及实现和应用它们的实用技术。 计算机科学(computer science,有时缩写为CS)是系统性研究信息与计算的理论基础以及它们在计算机系统中如何与应用的实用技术的学科。 它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究。计算机科学包含很多分支领域;有些强调特定结果的计算,比如计算机图形学;而有些是探討计算问题的性质,比如计算复杂性理论;还有一些领域專注于怎样实现计算,比如程式語言理論是研究描述计算的方法,而程式设计是应用特定的程式語言解决特定的计算问题,人机交互则是專注于怎样使计算机和计算变得有用、好用,以及随时随地为人所用。 有时公众会误以为计算机科学就是解决计算机问题的事业(比如信息技术),或者只是与使用计算机的经验有关,如玩游戏、上网或者文字处理。其实计算机科学所关注的,不仅仅是去理解实现类似游戏、浏览器这些软件的程序的性质,更要通过现有的知识创造新的程序或者改进已有的程序。 尽管计算机科学(computer science)的名字里包含计算机这几个字,但实际上计算机科学相当数量的领域都不涉及计算机本身的研究。因此,一些新的名字被提议出来。某些重点大学的院系倾向于术语计算科学(computing science),以精确强调两者之间的不同。丹麦科学家Peter Naur建议使用术语"datalogy",以反映这一事实,即科学学科是围绕着数据和数据处理,而不一定要涉及计算机。第一个使用这个术语的科学机构是哥本哈根大学Datalogy学院,该学院成立于1969年,Peter Naur便是第一任教授。这个术语主要被用于北欧国家。同时,在计算技术发展初期,《ACM通讯》建议了一些针对计算领域从业人员的术语:turingineer,turologist,flow-charts-man,applied meta-mathematician及applied epistemologist。 三个月后在同样的期刊上,comptologist被提出,第二年又变成了hypologist。 术语computics也曾经被提议过。在欧洲大陆,起源于信息(information)和数学或者自动(automatic)的名字比起源于计算机或者计算(computation)更常见,如informatique(法语),Informatik(德语),informatika(斯拉夫语族)。 著名计算机科学家Edsger Dijkstra曾经指出:“计算机科学并不只是关于计算机,就像天文学并不只是关于望远镜一样。”("Computer science is no more about computers than astronomy is about telescopes.")设计、部署计算机和计算机系统通常被认为是非计算机科学学科的领域。例如,研究计算机硬件被看作是计算机工程的一部分,而对于商业计算机系统的研究和部署被称为信息技术或者信息系统。然而,现如今也越来越多地融合了各类计算机相关学科的思想。计算机科学研究也经常与其它学科交叉,比如心理学,认知科学,语言学,数学,物理学,统计学和经济学。 计算机科学被认为比其它科学学科与数学的联系更加密切,一些观察者说计算就是一门数学科学。 早期计算机科学受数学研究成果的影响很大,如Kurt Gödel和Alan Turing,这两个领域在某些学科,例如数理逻辑、范畴论、域理论和代数,也不断有有益的思想交流。.

佩尔·马丁-洛夫和计算机科学 · 类型论和计算机科学 · 查看更多 »

逻辑

邏輯(λογική;Logik;logique;logic;意大利语、西班牙语、葡萄牙语: logica),又稱理則、論理、推理、推論,是对有效推論的哲學研究。邏輯被使用在大部份的智能活動中,但主要在哲學、心理、学习、推论统计学、脑科学、數學、語義學、 法律和電腦科學等領域內被視為一門學科。邏輯討論邏輯論證會呈現的一般形式,哪種形式是有效的,以及其中的謬論。 邏輯通常可分為三個部份:歸納推理、溯因推理和演繹推理。 在哲學裡,邏輯被應用在大多數的主要領域之中:形上學/宇宙論、本體論、知識論及倫理學。 在數學裡,邏輯是指形式逻辑和数理邏輯,形式逻辑是研究某個形式語言的有效推論。主要是演繹推理。 在辯證法中也會學習到邏輯。数理邏輯是研究抽象邏輯关系和数学基本的问题。 在心理、脑科学、語義學、 法律裡,是研究人类思想推理的处理。 在学习、推论统计学裡,是研究最大可能的结论。主要是歸納推理、溯因推理。 在電腦科學裡, 是研究各种方法的性质,可能性,和实现在机器上。主要是歸納推理、溯因推理,也有在歸納推理的研究。 从古文明开始(如古印度、中國和古希臘)都有對邏輯進行研究。在西方,亞里斯多德將邏輯建立成一門正式的學科,並在哲學中給予它一個基本的位置。.

佩尔·马丁-洛夫和逻辑 · 类型论和逻辑 · 查看更多 »

逻辑框架

在类型论中,LF 逻辑框架提供了定义(或表示)逻辑的一种方式。它基于了通过有依赖类型的lambda 演算方式的对语法、规则和证明的一般性处理。语法按类似于但更一般性的 Per Martin-Löf 文章中的系统的风格来处理。 要描述一个逻辑框架,你必须提供如下: 1.

佩尔·马丁-洛夫和逻辑框架 · 类型论和逻辑框架 · 查看更多 »

构造演算

构造演算(CoC)是高阶有类型 lambda 演算,这里的类型是一级值。因此在 CoC 内有可能定义从整数到类型、从类型到类型的函数,同从整数到整数的函数一样。CoC 是强规范化的。 CoC 最初由 Thierry Coquand 开发。 CoC 是 Coq 定理证明器早期版本的基础;它后来的版本建造在归纳构造演算之上,这是带有对归纳数据类型的天然支持的 CoC 扩展。在最初的 CoC 中,归纳数据类型必须模拟为它们的多态解构函数。.

佩尔·马丁-洛夫和构造演算 · 构造演算和类型论 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

佩尔·马丁-洛夫和数学 · 数学和类型论 · 查看更多 »

上面的列表回答下列问题

佩尔·马丁-洛夫和类型论之间的比较

佩尔·马丁-洛夫有43个关系,而类型论有27个。由于它们的共同之处7,杰卡德指数为10.00% = 7 / (43 + 27)。

参考

本文介绍佩尔·马丁-洛夫和类型论之间的关系。要访问该信息提取每篇文章,请访问: