我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

代数几何和扎里斯基拓扑

快捷方式: 差异相似杰卡德相似系数参考

代数几何和扎里斯基拓扑之间的区别

代数几何 vs. 扎里斯基拓扑

代数几何是数学的一个分支。 经典代数几何研究多项式方程的零点,而现代代数几何将抽象代数,尤其是交换代数,同几何学的语言和问题结合起来。 代数几何的基本研究对象为代数簇。代数簇是由空间坐标的若干代数方程的零点集。常见的例子有平面代数曲线,比如直线、圆、椭圆、抛物线、双曲线、三次曲线(非奇异情形称作椭圆曲线)、四次曲线(如双纽线,以及卵形线)、以及一般n次曲线。代数几何的基本问题涉及对代数簇的分类,比如考虑在双有理等价意义下的分类,即双有理几何,以及模空间问题,等等。 代数几何在现代数学占中心地位,与多复变函数论、微分几何、拓扑学和数论等不同领域均有交叉。始于对代数方程组的研究,代数几何延续解方程未竟之事;与其求出方程实在的解,代数几何尝试理解方程组的解的几何性质。代数几何的概念和技巧都催生了某些最深奥的数学的分支。 进入20世纪,代数几何的研究又衍生出几个分支:. 在代数几何和交换代数中,扎里斯基拓扑是定義在代数簇上的拓扑。其由奥斯卡·扎里斯基首先提出,及後用作給出一般交换环的素理想集的拓撲結構,稱為環的谱。 有了扎里斯基拓扑,無論一個代數簇的基域是否一個拓撲域(即一個域,其上可定義一個拓撲,使得加法和乘法都是連續函數),都可應用拓扑学的工具到代数簇的研究上。这是概形论的基本思想,有了它才允许將多個仿射簇黏合,而成一個一般的代數簇,正如流形理论中,流形由多個坐标卡(實仿射空间的開集)黏合而成一樣。 將一個代數簇的代數子集定義為閉集,就得到該代數簇的扎里斯基拓扑。若該代數簇定義在复数上,則扎里斯基拓扑比通常的拓扑结构更粗糙,因为每一个代数集在通常的拓撲中也都是闭集。 扎里斯基拓撲在交換環的素理想集上的推廣可從希尔伯特零点定理得到,因為該定理說,代數閉域上的仿射簇的點,與該仿射簇的坐標環的极大理想一一對應。因此可如下定義一個交換環的極大理想集上的扎里斯基拓撲:若干極大理想的集合是閉集,當且僅當該些極大理想就是包含某一理想的所有極大理想。格罗滕迪克的概形論中還有另一個基本思想,就是不單考慮對應某個極大理想的點,還要考慮任意(不可約的)代數簇,即對應素理想的點。 所以交換環的素理想集(稱為「譜」)上的扎里斯基拓撲滿足:若干素理想的集合為閉集,當且僅當該些素理想就是包含某一理想的所有素理想。.

之间代数几何和扎里斯基拓扑相似

代数几何和扎里斯基拓扑有(在联盟百科)9共同点: 复数希尔伯特零点定理亚历山大·格罗滕迪克代数簇理想 (环论)素理想概形施普林格科学+商业媒体拓扑学

复数

#重定向 复数 (数学).

代数几何和复数 · 复数和扎里斯基拓扑 · 查看更多 »

希尔伯特零点定理

希尔伯特零点定理(Hilbert's Nullstellensatz)确立了几何和代数之间的基本关系。数学中一大重要分支——代数几何——正是建立在这一关联的基础之上的。零点定理联系了代数集与(代数闭域上的)多项式环中的理想。大卫·希尔伯特最早发现了这一关联,并证明了零点定理及其它相关的重要定理(如希尔伯特基定理)。.

代数几何和希尔伯特零点定理 · 希尔伯特零点定理和扎里斯基拓扑 · 查看更多 »

亚历山大·格罗滕迪克

亚历山大·格罗滕迪克(低地德语:Alexander Grothendieck,Alexandre 或 Alexander Grothendieck;姓氏發音:,,),法國数学家、1966年菲爾茲獎得主,被譽為是20世紀最偉大的數學家。他於德国柏林出生,一生主要在法國成長及居住,但是工作生涯中長時期是無國籍的,1970至1980年代入籍法國。 他是現代代數幾何的奠基者,他的工作極大地拓展了代数几何此一領域,並將交换代数、同调代数、層論以及范畴论的主要概念也納入其基礎中。他的导致了纯粹数学很多领域革命性的进展。 他的多產數學家工作在1949年開始。1958年他獲任為法國高等科學研究所(IHÉS)的研究教授,直至1970年,他發現研究所受到軍事資助,與個人政治理念相反,因而離任。雖然他後來成為蒙彼利埃大學教授,也做了一些私人的數學研究,但他其時已離開數學界,把精力用於政治理想上。他在1988年正式退休後,到比利牛斯山隱居,與世隔絕,直至2014年在法國聖利齊耶離世,享年86歲。.

亚历山大·格罗滕迪克和代数几何 · 亚历山大·格罗滕迪克和扎里斯基拓扑 · 查看更多 »

代数簇

代数簇,亦作代數多樣體,是代数几何学上多项式集合的公共零点解的集合。代数簇是经典(某种程度上也是现代)代数几何的中心研究对象。 術語簇(variety)取自拉丁语族中詞源(cognate of word)的概念,有基於“同源”而“變形”之意。 历史上,代数基本定理建立了代数和几何之间的一个联系,它表明在复数域上的单变量的多项式由它的根的集合决定,而根集合是内在的几何对象。在此基础上,希尔伯特零点定理提供了多项式环的理想和仿射空间子集的基本对应。利用零点定理和相关结果,我们能够用代数术语捕捉簇的几何概念,也能够用几何来承载环论中的问题。.

代数几何和代数簇 · 代数簇和扎里斯基拓扑 · 查看更多 »

理想 (环论)

想(Ideal)是一个抽象代数中的概念。.

代数几何和理想 (环论) · 扎里斯基拓扑和理想 (环论) · 查看更多 »

素理想

在数学中,素理想是环的一个子集,与整数环中的素数共享许多重要的性质。.

代数几何和素理想 · 扎里斯基拓扑和素理想 · 查看更多 »

概形

概形是代數幾何學中的一個基本概念。.

代数几何和概形 · 扎里斯基拓扑和概形 · 查看更多 »

施普林格科学+商业媒体

施普林格科学+商业媒体(Springer Science+Business Media)或施普林格(Springer,),在柏林成立,是一个总部位于德国的世界性出版公司,它出版教科书、学术参考书以及同行评论性杂志,专--于科学、技术、数学以及医学领域。在科学、技术与医学领域中,施普林格是最大的书籍出版者,以及第二大世界性杂志出版者(最大的是爱思唯尔)。施普林格拥有超过60个出版社,每年出版1,900种杂志,5,500种新书,营业额为9.24亿欧元(2006年),雇有超过5,000名员工 。施普林格在柏林、海德堡、多德雷赫特(位于荷兰)与纽约设有主办事处。施普林格亚洲总部设在香港。2005年8月,施普林格在北京成立代表处。.

代数几何和施普林格科学+商业媒体 · 扎里斯基拓扑和施普林格科学+商业媒体 · 查看更多 »

拓扑学

在數學裡,拓撲學(topology),或意譯為位相幾何學,是一門研究拓撲空間的學科,主要研究空間內,在連續變化(如拉伸或彎曲,但不包括撕開或黏合)下維持不變的性質。在拓撲學裡,重要的拓撲性質包括連通性與緊緻性。 拓撲學是由幾何學與集合論裡發展出來的學科,研究空間、維度與變換等概念。這些詞彙的來源可追溯至哥特佛萊德·萊布尼茲,他在17世紀提出「位置的幾何學」(geometria situs)和「位相分析」(analysis situs)的說法。莱昂哈德·歐拉的柯尼斯堡七橋問題與歐拉示性數被認為是該領域最初的定理。「拓撲學」一詞由利斯廷於19世紀提出,雖然直到20世紀初,拓撲空間的概念才開始發展起來。到了20世紀中葉,拓撲學已成為數學的一大分支。 拓撲學有許多子領域:.

代数几何和拓扑学 · 扎里斯基拓扑和拓扑学 · 查看更多 »

上面的列表回答下列问题

代数几何和扎里斯基拓扑之间的比较

代数几何有53个关系,而扎里斯基拓扑有44个。由于它们的共同之处9,杰卡德指数为9.28% = 9 / (53 + 44)。

参考

本文介绍代数几何和扎里斯基拓扑之间的关系。要访问该信息提取每篇文章,请访问: