我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

不确定性原理和態向量

快捷方式: 差异相似杰卡德相似系数参考

不确定性原理和態向量之间的区别

不确定性原理 vs. 態向量

在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。. 在量子力學裏,一個量子系統的量子態可以抽象地用態向量來表示。態向量存在於內積空間。定義內積空間為增添了一個額外的內積結構的向量空間。態向量滿足向量空間所有的公理。態向量是一種特殊的向量,它也允許內積的運算。態向量的範度是1,是一個單位向量。標記量子態\psi\,\!的態向量為|\psi\rangle\,\!。 每一個內積空間都有單範正交基。態向量是單範正交基的所有基向量的線性組合: 其中,|e_1\rangle,\,|e_2\rangle,\,\dots,\,|e_n\rangle\,\!是單範正交基的基向量,n\,\!是單範正交基的基數,c_1,\,c_2,\,\dots,\,c_n\,\!是複值的係數,是|\psi\rangle\,\!的分量,c_i\,\!是|\psi\rangle\,\!投射於基向量|e_i\rangle\,\!的分量,也是|\psi\rangle\,\!處於|e_i\rangle\,\!的機率幅。 換一種方法表達: \end\,\!。 在狄拉克標記方法裏,態向量|\psi\rangle\,\!稱為右矢。對應的左矢為\langle\psi|\,\!,是右矢的厄米共軛,用方程式表達為 其中,\dagger\,\!象徵為取厄米共軛。 設定兩個態向量|\alpha\rangle.

之间不确定性原理和態向量相似

不确定性原理和態向量有(在联盟百科)4共同点: 公理量子力学量子態柯西-施瓦茨不等式

公理

在傳統邏輯中,公理是沒有經過證明,但被當作不證自明的一個命題。因此,其真實性被視為是理所當然的,且被當做演繹及推論其他(理論相關)事實的起點。當不斷要求證明時,因果關係毕竟不能無限地追溯,而需停止於無需證明的公理。通常公理都很簡單,且符合直覺,如「a+b.

不确定性原理和公理 · 公理和態向量 · 查看更多 »

量子力学

量子力学(quantum mechanics)是物理學的分支,主要描写微观的事物,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学,如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的學科,都是以其为基础。 19世紀末,人們發現舊有的經典理論無法解釋微观系统,於是經由物理學家的努力,在20世紀初創立量子力学,解釋了這些現象。量子力學從根本上改變人類對物質結構及其相互作用的理解。除透过广义相对论描写的引力外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。 愛因斯坦可能是在科學文獻中最先給出術語「量子力學」的物理學者。.

不确定性原理和量子力学 · 態向量和量子力学 · 查看更多 »

量子態

在量子力學裏,量子態(quantum state)指的是量子系統的狀態。態向量可以用來抽像地表示量子態。採用狄拉克標記,態向量表示為右矢|\psi\rangle;其中,在符號內部的希臘字母\psi可以是任何符號,字母,數字,或單字。例如,在計算氫原子能譜時,能級與主量子數n有關,所以,每個量子態的態向量可以表示為|n \rangle。 一般而言,量子態可以是純態或混合態。上述案例是純態。混合態是由很多純態組成的機率混合。不同的組合可能會組成同樣的混合態。當量子態是混合態時,可以用密度矩陣做數學描述,這密度矩陣實際給出的是機率,不是密度。純態也可以用密度矩陣表示。 哥本哈根詮釋以操作定義的方法對量子態做定義:量子態可以從一系列製備程序來辨認,即這程序所製成的量子系統擁有這量子態。例如,使用z-軸方向的斯特恩-革拉赫實驗儀器,如右圖所示,可以將入射的銀原子束,依照自旋的z-分量S_z分裂成兩道,一道的S_z為上旋,量子態為|\uparrow\rangle或|z+\rangle,另一道的S_z為下旋,量子態為|\downarrow\rangle或|z-\rangle,這樣,可以製備成量子態為|\uparrow\rangle的銀原子束,或量子態為|\downarrow\rangle的銀原子束。銀原子自旋態向量存在於二維希爾伯特空間。對於這純態案例,相關的態向量|\psi\rangle.

不确定性原理和量子態 · 態向量和量子態 · 查看更多 »

柯西-施瓦茨不等式

數學上,柯西-施瓦茨不等式,又稱施瓦茨不等式或柯西-布尼亞科夫斯基-施瓦茨不等式,是一條很多場合都用得上的不等式;例如線性代數的矢量,數學分析的無窮級數和乘積的積分,和概率論的方差和協方差。它被认为是最重要的数学不等式之一。它有一些推广,如赫尔德不等式。 不等式以奧古斯丁·路易·柯西(Augustin Louis Cauchy),赫爾曼·阿曼杜斯·施瓦茨(Hermann Amandus Schwarz),和(Виктор Яковлевич Буняковский)命名。.

不确定性原理和柯西-施瓦茨不等式 · 態向量和柯西-施瓦茨不等式 · 查看更多 »

上面的列表回答下列问题

不确定性原理和態向量之间的比较

不确定性原理有111个关系,而態向量有16个。由于它们的共同之处4,杰卡德指数为3.15% = 4 / (111 + 16)。

参考

本文介绍不确定性原理和態向量之间的关系。要访问该信息提取每篇文章,请访问: