之间Σ-代数和博雷爾集相似
Σ-代数和博雷爾集有(在联盟百科)8共同点: 埃米尔·博雷尔,博雷尔测度,可數集,并集,交集,补集,测度,数学。
埃米尔·博雷尔
费力克斯-爱德华-朱斯坦-埃米尔·博雷尔(Félix-Édouard-Justin-Émile Borel, )是一位法國數學家和政治家。.
博雷尔测度
博雷爾代數是實數上包含所有區間的最小σ代數,其中的元素稱作博雷爾集;博雷爾測度(Borel measure)是σ代數上對區間給出值b-a的測度。 博雷爾測度並不完備,因此習慣使用勒貝格測度:每個博雷爾可測集都是勒貝格可測的,並且它們的測度值吻合。 在抽象測度理論中,設E為局部緊豪斯多夫空间。E上的一個博雷爾測度是 E的博雷爾代數\mathfrak(X) 上的任何一個測度μ。.
Σ-代数和博雷尔测度 · 博雷尔测度和博雷爾集 ·
可數集
在数学上,可数集,或称可列集、可数无穷集合,是与自然数集的某个子集具有相同基數(等势)的集合。在这个意义下不是可数集的集合称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数永远无法终止,集合中每一个特定的元素都将对应一个自然数。 “可数集”这个术语也可以代表能和自然数集本身一一对应的集合。例子参见两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。 为了避免歧义,前一种意义上的可数有时称为至多可数,参见.
并集
在集合论和数学的其他分支中,一组集合的并集(台湾叫做聯--集、港澳叫做--、大陆叫做--)是这些集合的所有元素构成的集合,而不包含其他元素。.
交集
数学上,两个集合A和B的交集是含有所有既属于A又属于B的元素,而没有其他元素的集合。.
补集
在集合论和数学的其他分支中,存在--的两种定义:--和--。.
测度
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。 测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中都有所体现。.
数学
数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.
上面的列表回答下列问题
- 什么Σ-代数和博雷爾集的共同点。
- 什么是Σ-代数和博雷爾集之间的相似性
Σ-代数和博雷爾集之间的比较
Σ-代数有18个关系,而博雷爾集有31个。由于它们的共同之处8,杰卡德指数为16.33% = 8 / (18 + 31)。
参考
本文介绍Σ-代数和博雷爾集之间的关系。要访问该信息提取每篇文章,请访问: