徽标
联盟百科
通讯
下载应用,请到 Google Play
新! 在您的Android™设备上下载联盟百科!
下载
比浏览器更快的访问!
 

IPv4和TCP/IP协议族

快捷方式: 差异相似杰卡德相似系数参考

IPv4和TCP/IP协议族之间的区别

IPv4 vs. TCP/IP协议族

网际协议版本4(Internet Protocol version 4,IPv4),又稱網際網路通訊協定第四版,是网际协议开发过程中的第四个修订版本,也是此协议第一个被广泛部署的版本。IPv4是互联网的核心,也是使用最广泛的网际协议版本,其後繼版本為IPv6,直到2011年,IANA IPv4位址完全用盡時,IPv6仍处在部署的初期。 IPv4在IETF于1981年9月发布的 RFC 791 中被描述,此RFC替换了于1980年1月发布的 RFC 760。 IPv4是一种无连接的协议,操作在使用分组交换的链路层(如以太网)上。此协议会尽最大努力交付数据包,意即它不保证任何数据包均能送达目的地,也不保证所有数据包均按照正确的顺序无重复地到达。这些方面是由上层的传输协议(如传输控制协议)处理的。. 互联网协议族(Internet Protocol Suite,縮寫IPS)是一個網路通訊模型,以及一整個网络传输协议家族,為網際網路的基礎通訊架構。它常被通稱為TCP/IP协议族(TCP/IP Protocol Suite,或TCP/IP Protocols),简称TCP/IP。因為该協定家族的兩個核心協定:TCP(传输控制协议)和IP(网际协议),為该家族中最早通過的標準。由於在網絡通讯协议普遍采用分层的结构,当多个层次的协议共同工作时,类似计算机科学中的堆栈,因此又被称为TCP/IP协议栈(TCP/IP Protocol Stack) 。这些协议最早发源于美国国防部(縮寫為DoD)的ARPA网项目,因此也被稱作DoD模型(DoD Model)。這個協定套組由互联网工程任务组負責維護。 TCP/IP提供點對點的連結機制,將資料應該如何封裝、定址、傳輸、路由以及在目的地如何接收,都加以標準化。它將軟體通信過程抽象化為四個抽象層,採取協定堆疊的方式,分別實作出不同通信協定。協定套組下的各種協定,依其功能不同,被分別歸屬到這四個階層之中,常被視為是簡化的七層OSI模型。.

之间IPv4和TCP/IP协议族相似

IPv4和TCP/IP协议族有(在联盟百科)22共同点: 域名系统多协议标签交换多播互联网号码分配局互联网工程任务组互联网控制消息协议以太网传输层传输控制协议开放式最短路径优先地址解析协议因特网组管理协议BOOTP网络层网络地址转换网际协议用户数据报协议虛擬私人網路IPv6RARPWHOIS流控制传输协议

域名系统

網域名稱系統(英文:Domain Name System,縮寫:DNS)是互联网的一项服务。它作为将域名和IP地址相互映射的一个分布式数据库,能够使人更方便地访问互联网。DNS使用TCP和UDP端口53。当前,对于每一级域名长度的限制是63个字符,域名总长度则不能超过253个字符。 开始时,域名的字符仅限于ASCII字符的一个子集。2008年,ICANN通过一项决议,允许使用其它语言作为互联网顶级域名的字符。使用基于Punycode码的IDNA系统,可以将Unicode字符串映射为有效的DNS字符集。因此,诸如“x.中国”、“x.台湾”的域名可以在地址栏直接输入并访问,而不需要安装插件。但是,由于英语的广泛使用,使用其他语言字符作为域名会产生多种问题,例如难以输入,难以在国际推广等。.

IPv4和域名系统 · TCP/IP协议族和域名系统 · 查看更多 »

多协议标签交换

多协议标签交换(Multi-Protocol Label Switching,縮寫為MPLS)是一种在开放的通信网上利用标签引导数据高速、高效传输的新技术。多协议的含义是指MPLS不但可以支持多种网络层层面上的协议,还可以兼容第二层的多种数据链路层技术。 它的价值在于能够在一个无连接的网络中引入连接模式的特性;其主要优点是减少了网络复杂性,兼容现有各种主流网络技术,能降低网络成本,在提供IP业务时能确保QoS和安全性,具有流量工程能力。此外,MPLS能解决VPN扩展问题和维护成本问题。 MPLS属于第三代网络架构,是新一代的IP高速骨干网络交换标准,由IETF所提出,由Cisco、ASCEND、3Com等网络设备大厂所主导。 采用MPLS的数据包只须在OSI第二层(数据链结层)执行硬件式交换(取代第三层(网络层)软件式routing),它整合了IP选径与第二层标记交换为单一的系统,因此可以解决Internet路由的问题,使数据包传送的延迟时间减短,增加网络传输的速度,更适合多媒体讯息的传送。因此,MPLS最大技术特色为可以指定数据包传送的先后顺序。MPLS使用标记交换(Label Switching),网络路由器只需要判别标记后即可进行转送处理。.

IPv4和多协议标签交换 · TCP/IP协议族和多协议标签交换 · 查看更多 »

多播

多播(multicast,台灣又譯作多點傳送、多點廣播或群--播,中國大陸又譯作組--播)是指把信息同时传递给一组目的地址。它使用的策略是最高效的,因为消息在每条网络链路上只需传递一次,且只有在链路分叉的时候,消息才会被复制。与多播相比,常规的点到单点传递被称作单播。当以单播的形式把消息传递给多个接收方时,必须向每个接收者都发送一份数据副本。由此产生的多余副本将导致发送方效率低下,且缺乏可扩展性。不过,许多流行的协议——例如XMPP,用限制接收者数量的方法弥补了这一不足。.

IPv4和多播 · TCP/IP协议族和多播 · 查看更多 »

互联网号码分配局

互联网号码分配局(Internet Assigned Numbers Authority,缩写IANA),是一家互联网地址指派机构,管理国际互联网中使用的IP地址、域名和许多其它参数的机构。IP地址、自治系统成员以及许多顶级和二级域名分配的日常职责由国际互联网注册中心(IR)和地区注册中心承担。IANA是由ICANN管理的。.

IPv4和互联网号码分配局 · TCP/IP协议族和互联网号码分配局 · 查看更多 »

互联网工程任务组

互联网工程任务小组(Internet Engineering Task Force,縮寫為 IETF)负责互联网标准的开发和推动。 它的组织形式主要是大量负责特定议题的工作组,每个都有一个指定主席(或者若干副主席)。工作组再用主题组织为领域(area);每个领域都有一个领域指导(area director,AD),大多数领域还有两个副AD;AD任命工作组主席。AD和IETF主席构成Internet Engineering Steering Group(IESG),负责IETF的整体运作。.

IPv4和互联网工程任务组 · TCP/IP协议族和互联网工程任务组 · 查看更多 »

互联网控制消息协议

互联网控制消息协议(Internet Control Message Protocol,缩写:ICMP)是互联网协议族的核心协议之一。它用于TCP/IP网络中发送控制消息,提供可能发生在通信环境中的各种问题反馈,通过这些信息,使管理者可以对所发生的问题作出诊断,然后采取适当的措施解决。 ICMP 依靠IP來完成它的任务,它是IP的主要部分。它与传输协议(如TCP和UDP)显著不同:它一般不用于在两点间传输数据。它通常不由网络程序直接使用,除了ping和traceroute这两个特別的例子。 IPv4中的ICMP被称作ICMPv4,IPv6中的ICMP则被称作ICMPv6。.

IPv4和互联网控制消息协议 · TCP/IP协议族和互联网控制消息协议 · 查看更多 »

以太网

以太网(Ethernet)是一种计算机局域网技术。IEEE組織的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。 以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,將能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一來,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即載波多重存取/碰撞偵測)的总线技术。.

IPv4和以太网 · TCP/IP协议族和以太网 · 查看更多 »

传输层

在计算机网络中,传输层(transport layer)互联网协议套件与(OSI)网络堆栈中协议的分层结构中的方法的一个概念划分。该层的协议为应用进程提供端到端的通信服务。 它提供面向连接的支持、可靠性、流量控制、多路复用等服务。 互联网与一般性网络的OSI模型的基础,TCP/IP模型的传输层的具体实现和含义(RFC 1122)是不同的。在OSI模型中传输层最常被称作第4层或L4,而TCP/IP中不常给网络层编号。 最著名的TCP/IP传输协议是传输控制协议(TCP), 它的名称借用自整个套件的名称。它用于面向连接的传输,而无连接的用户数据报协议(UDP)用于简单消息传输。TCP是更复杂的协议,因为它的状态性设计结合了可靠传输和数据流服务。这个协议组中其他重要协议有数据拥塞控制协议(DCCP)与流控制传输协议(SCTP)。.

IPv4和传输层 · TCP/IP协议族和传输层 · 查看更多 »

传输控制协议

传输控制协议(Transmission Control Protocol,縮寫為TCP)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模型中,它完成第四层传输层所指定的功能,用户数据包协议(UDP)是同一层内另一个重要的传输协议。 在因特网协议族(Internet protocol suite)中,TCP层是位于IP层之上,应用层之下的中间层。不同主机的应用层之间经常需要可靠的、像管道一样的连接,但是IP层不提供这样的流机制,而是提供不可靠的包交换。 应用层向TCP层发送用于网间传输的、用8位字节表示的数据流,然后TCP把数据流分割成适当长度的报文段(通常受该计算机连接的网络的数据链路层的最大传输单元(MTU)的限制)。之后TCP把结果包传给IP层,由它来通过网络将包传送给接收端实体的TCP层。TCP为了保证不发生丢包,就给每个包一个序号,同时序号也保证了传送到接收端实体的包的按序接收。然后接收端实体对已成功收到的包发回一个相应的确认(ACK);如果发送端实体在合理的往返时延(RTT)内未收到确认,那么对应的数据包就被假设为已丢失将会被进行重传。TCP用一个校验和函数来检验数据是否有错误;在发送和接收时都要计算校验和。.

IPv4和传输控制协议 · TCP/IP协议族和传输控制协议 · 查看更多 »

开放式最短路径优先

开放式最短路径优先(Open Shortest Path First,縮寫為 OSPF)是对链路状态路由协议的一种实现,隶属内部网关协议(IGP),故运作于自治系统内部。採用戴克斯特拉算法(Dijkstra's algorithm)被用来计算最短路径树。它使用“代价(Cost)”作为路由度量。链路状态数据库(LSDB)用来保存当前网络拓扑结构,路由器上属于同一区域的链路状态数据库是相同的(属于多个区域的路由器会为每个区域维护一份链路状态数据库)。OSPF分为OSPFv2和OSPFv3两个版本,其中OSPFv2用在IPv4网络,OSPFv3用在IPv6网络。OSPFv2是由RFC 2328定义的,OSPFv3是由RFC 5340定义的。 OSPF协议是大中型网络上使用最为广泛的IGP(Interior Gateway Protocol)协议。节点在建立邻接,接受链路状态通告(Link-state Advertisement,LSA)时,可以通过MD5或者明文进行安全验证。 OSPF提出了“区域(Area)”的概念,一个网络可以由单一区域或者多个区域组成。其中,一个特别的区域被称为骨干区域(Backbone Area),该区域是整个OSPF网络的核心区域,并且所有其他的区域都与之直接连接。所有的内部路由都通过骨干区域传递到其他非骨干区域。所有的区域都必须直接连接到骨干区域,如果不能建立直接连接,那么可以通过虚链路(virtual link)和骨干区域建立虚拟连接。 同一个广播域(Broadcast Domain)的路由器或者一个点对点(Point To Point)连接的两端的路由器,在发现彼此的时候,建立邻接(Adjacencies)。多路访问网络以及非广播多路访问网络的路由器会选举指定路由器(Designated Router, DR)和备份指定路由器(Backup Designated Router, BDR),DR和BDR作为网络的中心负责路由器之间的信息交换从而降低了网络中的信息流量。OSPF协议同时使用单播(Unicast)和组播(Multicast)来发送Hello包和链路状态更新(Link State Updates),使用的组播地址为224.0.0.5和224.0.0.6。与RIP和BGP不同的是,OSPF协议不使用TCP或者UDP协议而是承载在IP协议之上,IP协议号为89,工作在OSI模型的传输层。.

IPv4和开放式最短路径优先 · TCP/IP协议族和开放式最短路径优先 · 查看更多 »

地址解析协议

地址解析协议 (ARP) 是通过解析地址来找寻数据链路层地址的一个在网络协议包中极其重要的网络传输协议。 ARP最初在1982年的RFC (征求意见稿)中提出并纳入互联网标准 STD 37.

IPv4和地址解析协议 · TCP/IP协议族和地址解析协议 · 查看更多 »

因特网组管理协议

网路群组管理协议(Internet Group Management Protocol或简写IGMP)是用于管理网路协议多播组成员的一种通信协议。IP主机和相邻的路由器利用IGMP来建立多播组的组成员。像ICMP用于单播连接一样,IGMP也是IP多播说明的一个完整部分。 IGMP為網際網路協定的一種,屬於開放系統連結(OSI) 模組的第三層協定,IP主機用它將主機的多點傳送成員人數報告給臨近的多點傳送路由器。.

IPv4和因特网组管理协议 · TCP/IP协议族和因特网组管理协议 · 查看更多 »

BOOTP

BOOTP是一種網路協定,讓電腦或其他周邊儀器可以從伺服器下載啟動程式。 BOOTP(Bootstrap Protocol)是DHCP的前身,本來是設計用來給無磁碟主機透過網路開機用的協定,它與DHCP最大的不同有:.

BOOTP和IPv4 · BOOTP和TCP/IP协议族 · 查看更多 »

网络层

网络层(Network Layer)是OSI模型中的第三層(TCP/IP模型中的网际层)。網絡層提供路由和尋址的功能,使兩終端系統能夠互連且決定最佳路徑,並具有一定的擁塞控制和流量控制的能力。由于TCP/IP協議體系中的網絡層功能由IP協議規定和實現,故又稱IP層。.

IPv4和网络层 · TCP/IP协议族和网络层 · 查看更多 »

网络地址转换

在计算机网络中,网络地址转换(Network Address Translation,縮寫為NAT),也叫做网络掩蔽或者IP掩蔽(IP masquerading),是一种在IP封包通过路由器或防火墙时重写來源IP地址或目的IP地址的技术。这种技术被普遍使用在有多台主机但只通过一个公有IP地址访问因特网的私有网络中。根据规范,路由器是不能这样工作的,但它的确是一个方便且得到了广泛应用的技术。当然,NAT也让主机之间的通信变得复杂,导致了通信效率的降低。.

IPv4和网络地址转换 · TCP/IP协议族和网络地址转换 · 查看更多 »

网际协议

網際協議(Internet Protocol,縮寫為IP),又译互联网协议,是用于封包交換数据网络的一种协议。 IP是在TCP/IP协议族中网络层的主要协议,任务仅仅是根据源主机和目的主机的地址来传送数据。为此目的,IP定义了寻址方法和数据报的封装结构。第一个架构的主要版本,现在称为IPv4,仍然是最主要的互联网协议,尽管世界各地正在积极部署IPv6。.

IPv4和网际协议 · TCP/IP协议族和网际协议 · 查看更多 »

用户数据报协议

户数据报协议(User Datagram Protocol,縮寫為UDP),又稱使用者資料包協定,是一个简单的面向数据报的传输层协议,正式規範為RFC 768。 在TCP/IP模型中,UDP为网络层以上和应用层以下提供了一个简单的接口。UDP只提供数据的不可靠传递,它一旦把应用程序发给网络层的数据发送出去,就不保留数据备份(所以UDP有时候也被认为是不可靠的数据报协议)。UDP在IP数据报的头部仅仅加入了复用和数据校验(字段)。 UDP首部字段由4个部分组成,其中两个是可选的。各16bit的來源端口和目的端口用来标记发送和接受的应用进程。因为UDP不需要应答,所以來源端口是可选的,如果來源端口不用,那么置为零。在目的端口后面是长度固定的以字节为单位的长度域,用来指定UDP数据报包括数据部分的长度,长度最小值为8byte。首部剩下地16bit是用来对首部和数据部分一起做校驗和(Checksum)的,这部分是可选的,但在实际应用中一般都使用这一功能。 由于缺乏可靠性且屬於非連接導向協定,UDP应用一般必须允许一定量的丢包、出错和复制貼上。但有些应用,比如TFTP,如果需要则必须在应用层增加根本的可靠机制。但是绝大多数UDP应用都不需要可靠机制,甚至可能因为引入可靠机制而降低性能。流媒體(串流技術)、即时多媒体游戏和IP电话(VoIP)一定就是典型的UDP应用。如果某个应用需要很高的可靠性,那么可以用传输控制协议(TCP协议)来代替UDP。 由于缺乏拥塞控制(congestion control),需要基于网络的机制来减少因失控和高速UDP流量负荷而导致的拥塞崩溃效应。换句话说,因为UDP发送者不能够检测拥塞,所以像使用包队列和丢弃技术的路由器这样的网络基本设备往往就成为降低UDP过大通信量的有效工具。数据报拥塞控制协议(DCCP)设计成通过在诸如流媒体类型的高速率UDP流中,增加主机拥塞控制,来减小这个潜在的问题。 典型网络上的众多使用UDP协议的关键应用一定程度上是相似的。这些应用包括域名系统(DNS)、简单网络管理协议(SNMP)、动态主机配置协议(DHCP)、路由信息协议(RIP)和某些影音串流服務等等。.

IPv4和用户数据报协议 · TCP/IP协议族和用户数据报协议 · 查看更多 »

虛擬私人網路

虛拟私人网络(Virtual Private Network,缩写为VPN)是一种常用于连接中、大型企业或团体与团体间的私人网络的通讯方法。虚拟私人网络的讯息透过公用的网络架构(例如:互联网)来传送内部網的网络讯息。它利用已加密的通道協議(Tunneling Protocol)來達到保密、傳送端認證、訊息準確性等私人訊息安全效果。這種技術可以用不安全的網路(例如:網際網路)來傳送可靠、安全的訊息。需要注意的是,加密訊息與否是可以控制的。沒有加密的虛擬私人網路訊息依然有被竊取的危險。 以日常生活的例子來比喻,虛擬私人網路就像:甲公司某部門的A想寄信去乙公司某部門的B。A已知B的地址及部門,但公司與公司之間的信不能註明部門名稱。於是,A請自己的秘書把指定B所屬部門的信(A可以選擇是否以密碼與B通訊)放在寄去乙公司地址的大信封中。當乙公司的秘書收到從甲公司寄到乙公司的信件後,該秘書便會把放在該大信封內的指定部門信件以公司內部郵件方式寄給B。同樣地,B會以同樣的方式回信給A。 在以上例子中,A及B是身處不同公司(內聯網路)的計算機(或相關機器),透過一般郵寄方式(公用網路)寄信給對方,再由對方的秘書(例如:支援虛擬私人網路的路由器或防火牆)以公司內部信件(內部網路)的方式寄至對方本人。請注意,在虛擬私人網路中,因應網路架構,秘書及收信人可以是同一人。許多現在的作業系統,例如Windows及Linux等因其所用傳輸協議,已有能力不用透過其它網路設備便能達到虛擬私人網路連接。.

IPv4和虛擬私人網路 · TCP/IP协议族和虛擬私人網路 · 查看更多 »

IPv6

网际协议第6版(英文:Internet Protocol version 6,縮寫:IPv6)是网际协议(IP)的最新版本,用作互联网的網路層協議,用它来取代IPv4主要是为了解决IPv4地址枯竭问题,不过它也在其他很多方面对IPv4有所改进。 IPv6的设计目的是取代IPv4,然而长期以来IPv4在互联网流量中仍占据主要地位,IPv6的使用增长缓慢。在2017年7月,通过IPv6使用Google服务的用户百分率首次超过20%。.

IPv4和IPv6 · IPv6和TCP/IP协议族 · 查看更多 »

RARP

#重定向 逆地址解析协议.

IPv4和RARP · RARP和TCP/IP协议族 · 查看更多 »

WHOIS

WHOIS(讀作「Who is」,而非縮寫)是用來查詢網際網路中域名的IP以及所有者等信息的傳輸協定。早期的WHOIS查詢多以命令列介面(Command Line)存在,但是現在出現了一些基於網頁介面的簡化線上查詢工具,甚至可以一次向不同的數據庫查詢。網頁介面的查詢工具仍然依賴WHOIS協定向伺服器傳送查詢請求,命令列介面的工具仍然被系統管理員廣泛使用。 WHOIS通常使用TCP協定43埠。每个域名或IP的WHOIS信息由对应的管理机构保存,例如,以.com结尾的域名的WHOIS信息由.com域名运营商VeriSign管理,中国国家顶级域名.cn域名由CNNIC管理。 通常情况下,域名或IP的信息可以由公众自由查询获得,具体的查询方法是登陆由管理机构提供的WHOIS服务器,输入待查询的域名进行查询。.

IPv4和WHOIS · TCP/IP协议族和WHOIS · 查看更多 »

流控制传输协议

串流控制传输协议(Stream Control Transmission Protocol 或简写 SCTP)是在2000年由 IETF 的 SIGTRAN 工作组定义的一个传输层协议。RFC 4960 详细地定义了 SCTP,介绍性的文档是RFC 3286。 作为一个传输层协议,SCTP 可以理解为和 TCP 及 UDP 相类似的。它提供的服务有点像 TCP,又同时将 UDP 的一些优点相结合。是一种提供了可靠、高效、有序的数据传输协议。相比之下 TCP 是面向字节的,而 SCTP 是针对成帧的消息。 SCTP 主要的贡献是对多重联外线路的支持,一个端点可以由多于一个 IP地址 组成,使得传输可在主机间或网卡间做到透明的网络容错备援。 SCTP 最初是被设计用于在 IP 上传输电话协议(SS7),把 SS7 信令网络的一些可靠特性引入 IP。IETF 的这方面的工作称为信令传输 SIGTRAN。 SCTP將資料傳給應用層的方式,是將資料視為message(bytes的集合),SCTP的特徵是message-oriented,意思就是說它傳送的是一串message(每一個message是byte為單位的集合),相對於TCP是以byte為單位,傳送的是破碎的串流。在SCTP發送端用一個動作送出訊息,接收端也是用一個動作取出訊息傳給對應的應用程序。相較於TCP,是一個串流導向的協定,可靠地且有順序地傳送以bytes為單位的串流。然而TCP並不允許接收端知道發送端的應用程式呼叫送出bytes集合的次數。在發送端TCP只是簡單的附加更多bytes在queue裡等待著送到網路上,而SCTP是將要送出的outband message都保有自己獨立的queue。.

IPv4和流控制传输协议 · TCP/IP协议族和流控制传输协议 · 查看更多 »

上面的列表回答下列问题

IPv4和TCP/IP协议族之间的比较

IPv4有60个关系,而TCP/IP协议族有122个。由于它们的共同之处22,杰卡德指数为12.09% = 22 / (60 + 122)。

参考

本文介绍IPv4和TCP/IP协议族之间的关系。要访问该信息提取每篇文章,请访问:

嘿!我们在Facebook上吧! »