我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

1 − 2 + 3 − 4 + …和平方数

快捷方式: 差异相似杰卡德相似系数参考

1 − 2 + 3 − 4 + …和平方数之间的区别

1 − 2 + 3 − 4 + … vs. 平方数

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。. 数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9.

之间1 − 2 + 3 − 4 + …和平方数相似

1 − 2 + 3 − 4 + …和平方数有(在联盟百科)3共同点: 三角形數自然数数学

三角形數

一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形數。比如10个点可以组成一个等边三角形,因此10是一个三角形數: 一开始的18个三角形數是1、3、6、10、15、21、28、36、45、55、66、78、91、105、120、136、153、171、190、210、231、253…… 一个三角数乘以九再加一仍是一个三角数。 三角數的個位數字不可能是2、4、7、9,數字根不可能是2、4、5、7、8。 三角数的二倍的平方根取整,是这个三角数的序数。.

1 − 2 + 3 − 4 + …和三角形數 · 三角形數和平方数 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

1 − 2 + 3 − 4 + …和自然数 · 平方数和自然数 · 查看更多 »

数学

数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

1 − 2 + 3 − 4 + …和数学 · 平方数和数学 · 查看更多 »

上面的列表回答下列问题

1 − 2 + 3 − 4 + …和平方数之间的比较

1 − 2 + 3 − 4 + …有52个关系,而平方数有48个。由于它们的共同之处3,杰卡德指数为3.00% = 3 / (52 + 48)。

参考

本文介绍1 − 2 + 3 − 4 + …和平方数之间的关系。要访问该信息提取每篇文章,请访问: