我们正在努力恢复Google Play商店上的Unionpedia应用程序
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

1 − 2 + 3 − 4 + …和数学

快捷方式: 差异相似杰卡德相似系数参考

1 − 2 + 3 − 4 + …和数学之间的区别

1 − 2 + 3 − 4 + … vs. 数学

在数学中,1 − 2 + 3 − 4 + …表示以由小到大的接续正整數,依次加後又減、減後又加,如此反复所構成的無窮級數。它是交錯級數,若以Σ符号表示前m项之和,可写作: 此无穷级数发散,即其部分和的序列不会趋近于任一有穷极限。也就是說,單從極限的角度看的話,不存在和。不过,在18世纪中期,莱昂哈德·欧拉写出了一个他承认为悖论的等式: 该等式的严谨解释在很久以后才出现。自1890年起,恩纳斯托·切萨罗、埃米尔·博雷尔与其他一些数学家就在研究有哪些定义良好的方法,可以给发散级数賦予广义和「广义和」是指利用一些特殊的方式,計算--发散级数的「和」,由於发散级数不會有一般定義下的和,因此稱為广义和。——其中包含了对欧拉结果的新解释。这些求和法大部分可简单地指定的“和”為1⁄4。切萨罗求和是少数几种不能计算出之和的方法,因为此级数求和需要某个略强的方法——譬如阿贝耳求和。 级数与格蘭迪級數有紧密的联系。欧拉将这两个级数当作的特例(其中n为任意自然数),这个级数既直接扩展了他在巴塞尔问题上所做的工作,同时也引出了我们现在所知的狄利克雷η函数和黎曼ζ函数。. 数学是利用符号语言研究數量、结构、变化以及空间等概念的一門学科,从某种角度看屬於形式科學的一種。數學透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察而產生。數學家們拓展這些概念,為了公式化新的猜想以及從選定的公理及定義中建立起嚴謹推導出的定理。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一環。對數學基本概念的完善,早在古埃及、美索不達米亞及古印度內的古代數學文本便可觀見,而在古希臘那裡有更為嚴謹的處理。從那時開始,數學的發展便持續不斷地小幅進展,至16世紀的文藝復興時期,因为新的科學發現和數學革新兩者的交互,致使數學的加速发展,直至今日。数学并成为許多國家及地區的教育範疇中的一部分。 今日,數學使用在不同的領域中,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展,例如物理学的实质性发展中建立的某些理论激发数学家对于某些问题的不同角度的思考。數學家也研究純數學,就是數學本身的实质性內容,而不以任何實際應用為目標。雖然許多研究以純數學開始,但其过程中也發現許多應用之处。.

之间1 − 2 + 3 − 4 + …和数学相似

1 − 2 + 3 − 4 + …和数学有(在联盟百科)6共同点: 尼尔斯·阿贝尔严谨 (数学)微积分学函数自然数法语

尼尔斯·阿贝尔

尼尔斯·亨利克·阿贝尔(Niels Henrik Abel,),挪威數學家,開啟許多領域的研究,以證明懸疑餘兩百五十年五次方程的根式解的不可能性和对椭圆函数的研究中提出阿貝爾方程式而聞名。 生于挪威芬岛附近的 ,就读于奥斯陆大学。1825年得到政府资助,游学柏林和巴黎。儘管阿贝尔成就極高,卻生前不得志,無法獲得教席俾專心研究,最後因過度貧窮染上肺结核逝世於挪威的弗鲁兰。死後兩天,來自柏林的聘書才寄到家中。跟同樣早逝的伽羅華一同被奉為群論的先驅。现代有以他名字命名的阿贝尔奖。 法國數學家夏爾·埃爾米特讚曰:「阿貝爾讓數學家們足夠忙上五百年的。」 ;另一法國數學家阿德里安-馬里·勒讓德曰:「這挪威青年的頭腦實在不簡單啊!.

1 − 2 + 3 − 4 + …和尼尔斯·阿贝尔 · 尼尔斯·阿贝尔和数学 · 查看更多 »

严谨 (数学)

数学上,严谨不同于生活中的严谨,它指数学系统(尤指公理系统)的完备性和相容性。 完备性指公理数量不多不少正好可以推导出这门学科的全部结论;自洽性指公理系统内不存在悖论(即既是真又是假的命题)。比如绝对几何学加上第五公设就成为欧式几何,或者加上第五公设的反命题就成为非欧几何,但后两者并不满足完备性要求,只有绝对几何学才是度量几何类中的完备系统。自洽性与哥德爾不完備定理并不矛盾,前者断言不存在既真又假的命题,而后者断言存在既不可证明又不可证伪的命题,就好比第五公设之于度量几何,连续统假设之于集合论,选择公理之于ZF系统。.

1 − 2 + 3 − 4 + …和严谨 (数学) · 严谨 (数学)和数学 · 查看更多 »

微积分学

微積分學(Calculus,拉丁语意为计数用的小石頭) 是研究極限、微分學、積分學和無窮級數等的一個數學分支,並成為了現代大學教育的重要组成部分。歷史上,微積分曾經指無窮小的計算。更本質的講,微積分學是一門研究變化的科學,正如:幾何學是研究形狀的科學、代數學是研究代數運算和解方程的科學一樣。微積分學又稱為“初等數學分析”。 微積分學在科學、經濟學、商業管理學和工業工程學領域有廣泛的應用,用來解决那些僅依靠代數學和幾何學不能有效解決的問題。微積分學在代數學和解析幾何學的基礎上建立起来,主要包括微分學、積分學。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和斜率等均可用一套通用的符號進行演绎。積分學,包括求積分的運算,為定義和計算長度、面積、體積等提供一套通用的方法。微積分學基本定理指出,微分和積分互為逆運算,這也是兩種理論被統一成微積分學的原因。我們能以兩者中任意一者為起點來討論微積分學,但是在教學中一般會先引入微分學。在更深的數學領域中,高等微積分學通常被稱為分析學,並被定義為研究函數的科學,是現代數學的主要分支之一。.

1 − 2 + 3 − 4 + …和微积分学 · 微积分学和数学 · 查看更多 »

函数

函數在數學中為兩集合間的一種對應關係:輸入值集合中的每項元素皆能對應唯一一項輸出值集合中的元素。例如實數x對應到其平方x2的關係就是一個函數,若以3作為此函數的輸入值,所得的輸出值便是9。 為方便起見,一般做法是以符號f,g,h等等來指代一個函數。若函數f以x作為輸入值,則其輸出值一般寫作f(x),讀作f of x。上述的平方函數關係寫成數學式記為f(x).

1 − 2 + 3 − 4 + …和函数 · 函数和数学 · 查看更多 »

自然数

数学中,自然数指用于计数(如「桌子上有三个苹果」)和定序(如「国内第三大城市」)的数字。用于计数时称之为基数,用于定序时称之为序数。 自然数的定义不一,可以指正整数 (1, 2, 3, 4, \ldots),亦可以指非负整数 (0, 1, 2, 3, 4, \ldots)。前者多在数论中使用,后者多在集合论和计算机科学中使用,也是 标准中所采用的定义。 数学家一般以\mathbb代表以自然数组成的集合。自然数集是一個可數的,無上界的無窮集合。.

1 − 2 + 3 − 4 + …和自然数 · 数学和自然数 · 查看更多 »

法语

法語(le français 或 la langue française)属于印欧语系罗曼语族,法語是除英語、西班牙語和阿拉伯語之外最多國家的官方語言也是聯合國工作語言之一,法語也是聯合國、歐盟、北約、奧運會、世貿和國際紅十字會等的官方語言及正式行政語言。法語在11世纪曾是除了中古漢語以外,當時世界上使用人口最多的语言。現時全世界有約一億人将法语作为母语,另有2.8億人使用法语(包括把它作为第二语言的人);这些数字目前仍在增長中,尤其是在非洲大陸。法語被广泛使用,其程度位居世界第二,僅次於英語。法国法语和魁北克法语是世界上最主要的两大法语分支,尽管它们從同一法语方言分化而成,但以两者互相溝通时则会有障礙,这是因為兩者在發音以及少数语法上有所区别。.

1 − 2 + 3 − 4 + …和法语 · 数学和法语 · 查看更多 »

上面的列表回答下列问题

1 − 2 + 3 − 4 + …和数学之间的比较

1 − 2 + 3 − 4 + …有52个关系,而数学有219个。由于它们的共同之处6,杰卡德指数为2.21% = 6 / (52 + 219)。

参考

本文介绍1 − 2 + 3 − 4 + …和数学之间的关系。要访问该信息提取每篇文章,请访问: