目录
假設檢定
假設檢定是推論統計中用于检验统计假设的一种方法。而“统计假设”是可通过观察一组随机变量的模型进行检验的科学假说。一旦能估計未知參數,就會希望根據結果對未知的真正參數值做出適當的推論。 統計上對參數的假設,就是對一個或多個參數的論述。而其中欲檢驗其正確性的為零假設(null hypothesis),零假設通常由研究者決定,反應研究者對未知參數的看法。相對於零假設的其他有關參數之論述是(alternative hypothesis),它通常反應了執行檢定的研究者對參數可能數值的另一種(對立的)看法(換句話說,對立假設通常才是研究者最想知道的)。 假设检验的种类包括:t检验,Z检验,卡方检验,F检验等等。.
查看 P值和假設檢定
均值
#重定向 平均数.
查看 P值和均值
不确定性
不确定性,是一個出現在哲學、統計學、經濟學、金融、保險、心理學、社會學及資訊工程的概念。在经济学中关于风险管理的概念,指经济主体对于未来的经济状况(尤其是收益和损失)的分布范围和状态不能确知,又稱為奈特氏不確定性。 決策論專家對於不確定性有更深入的分析。Doug Hubbard認為「不確定性」是當我們沒有足夠知識來描述當前情況或估計將來的結果。關於「不確定性的測量」,可以根據所有可能的結果,套用概率密度函數來分析。風險則是可能出現負面效果或損失的「不確定性」狀態。.
查看 P值和不确定性
随机变量
給定樣本空间(S, \mathbb),如果其上的實值函數 X:S \to \mathbb是\mathbb (實值)可測函數,则稱X為(實值)随机变量。初等概率論中通常不涉及到可測性的概念,而直接把任何X:S \to \mathbb的函數稱為随机变量。 如果X指定给概率空间S中每一个事件e有一个实数X(e),同时针对每一个实数r都有一个事件集合A_r与其相对应,其中A_r.
查看 P值和随机变量
零假设
在推论统计学中,零假设(null hypothesis,又译--、原假设,符号:H0)是做统计检验时的一类假设。零假设的内容一般是希望能证明为错误的假设,或者是需要着重考虑的假设。 比如说,在相关性检验中,一般会取“两者之间无关联”作为零假设,而在独立性检验中,一般会取“两者之间非獨立”作为零假设。与零假设相对的是备择假设(对立假设,alternative hypothesis),即希望证明是正确的另一种可能。从数学上来看,零假设和备择假设的地位是相等的,但是在统计学的实际运用中,常常需要强调一类假设为应当或期望实现的假设。如果一个统计检验的结果拒绝零假设(结论不支持零假设),而实际上真实的情况属于零假设,那么称这个检验犯了第一类错误。反之,如果检验结果支持零假设,而实际上真实的情况属于备择假设,那么称这个检验犯了第二类错误。通常的做法是,在保持第一类错误出现的机会在某个特定水平上的时候(即显著性差异值或α值),尽量减少第二类错误出现的概率。.
查看 P值和零假设
概率
--率,舊稱--率,又称或然率、機會率或--、可能性,是数学概率论的基本概念,是一个在0到1之间的实数,是对随机事件发生之可能性的度量。 概率常用來量化對於某些不確定命題的想法"Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), ISBN 978-0-534-24312-8,命題一般會是以下的形式:「某個特定事件會發生嗎?」,對應的想法則是:「我們可以多確定這個事件會發生?」。確定的程度可以用0到1之間的數值來表示,這個數值就是機率William Feller, "An Introduction to Probability Theory and Its Applications", (Vol 1), 3rd Ed, (1968),Wiley,ISBN 978-0-471-25708-0。因此若事件發生的機率越高,表示我們越認為這個事件可能發生。像丟銅板就是一個簡單的例子,正面朝上及背面朝上的兩種結果看來機率相同,每個的機率都是1/2,也就是正面朝上及背面朝上的機率各有50%。 這些概念可以形成機率論中的數學公理(參考概率公理),在像數學、統計學、金融、博弈論、科學(特別是物理)、人工智慧/機器學習、電腦科學及哲學等學科中都會用到。機率論也可以描述複雜系統中的內在機制及規律性。.
查看 P值和概率
概率模型
概率模型(Statistical Model,也稱為Probabilistic Model)是用来描述不同随机变量之间关系的数学模型,通常情况下刻画了一个或多个随机变量之间的相互非确定性的概率关系。从数学上讲,该模型通常被表达为(Y,P),其中Y是观测集合用来描述可能的观测结果,P是Y对应的概率分布函数集合。若使用概率模型,一般而言需假设存在一个确定的分布P生成观测数据Y。因此通常使用统计推断的办法确定集合P中谁是数据产生的原因。 大多数统计检验都可以被理解为一种概率模型。例如,一个比较两组数据均值的学生t检验可以被认为是对该概率模型参数是否为0的检测。此外,检验与模型的另一个共同点则是两者都需要提出假设并且误差在模型中常被假设为正态分布。.
查看 P值和概率模型
正态分布
常態分布(normal distribution)又名高斯分布(Gaussian distribution),是一個非常常見的連續機率分布。常態分布在统计学上十分重要,經常用在自然和社会科学來代表一個不明的隨機變量。 若隨機變量X服從一個位置參數為\mu、尺度參數為\sigma的常態分布,記為: 則其機率密度函數為 常態分布的數學期望值或期望值\mu等於位置參數,決定了分布的位置;其方差\sigma^2的開平方或標準差\sigma等於尺度參數,決定了分布的幅度。 常態分布的機率密度函數曲線呈鐘形,因此人們又經常稱之為鐘形曲線(类似于寺庙里的大钟,因此得名)。我們通常所說的標準常態分布是位置參數\mu.
查看 P值和正态分布
显著性差异
顯著性差異(ρ),是統計學上對數據差異性的評價。 當數據之間具有了顯著性差異,就說明參與比對的數據不是來自於同一總體(population),而是來自於具有差異的兩個不同總體。.
查看 P值和显著性差异