我们正在努力恢复Google Play商店上的Unionpedia应用程序
传出传入
🌟我们简化了设计以优化导航!
Instagram Facebook X LinkedIn

PP (複雜度)

指数 PP (複雜度)

在計算複雜度理論內,PP是一個複雜度類,包含可以在多項式時間裡面以概率圖靈機解決,無論輸入如何錯誤率均小於1/2的決定型問題。PP這個縮寫即代表了概率多項式時間(probabilistic polynomial time)。這個複雜度類是由Gill於1977年定義。 Lance Fortnow.

目录

  1. 7 关系: 多項式時間复杂性类井号PBQP (複雜度)NP完全PSPACE決定性問題

  2. 機率複雜度類

多項式時間

多項式時間(Polynomial time)在計算複雜度理論中,指的是一個問題的計算時間m(n)不大於問題大小n的多項式倍數。任何抽象機器都擁有一複雜度類,此類包括可於此機器以多項式時間求解的問題。 以數學描述的話,則可說m(n).

查看 PP (複雜度)和多項式時間

复杂性类

在計算複雜度理論中,一個複雜度類指的是一群複雜度類似的問題的集合。一個典型的複雜度類的定義有以下--: 例如'''NP'''類就是一群可以被一非確定型圖靈機以多項式時間解決的決定型問題。而P類則是一群可以被確定型圖靈機以多項式時間解決的決定型問題。某些複雜度類是一群函式問題(Function problem)的集合,例如'''FP'''。 許多複雜度類可被描述它的數學邏輯(mathematical logic)特徵化,請見可描述的複雜度(descriptive complexity)。 而Blum公理用於不需實際計算模型就可定義複雜度類的情況。.

查看 PP (複雜度)和复杂性类

井号P

在计算复杂性理论中,#P(英文读作sharp P,中文暂称为井号P,推荐读为计数P)是一组与NP中的判定性问题相关的计数问题。.

查看 PP (複雜度)和井号P

BQP (複雜度)

在計算複雜度理論內,有限錯誤量子多項式時間(bounded error quantum polynomial time,BQP)是一個決定性問題的複雜度類,並且其內的問題可以在多項式時間內以量子電腦解決,錯誤的機率小於1/3。BQP也可以視為是複雜度類BPP的量子電腦版。 換句話說,對BQP裡面的問題,存在一個使用量子電腦的演算法(量子演算法)花費多項式時間運作,並且有很高的機率回答正確的答案。對任何狀況,回答錯誤答案的機率小於三分之一。 與其他「有限錯誤」的機率演算法相同,這裡所提到的1/3是一個比較隨意的定義。如果原本演算法的錯誤機率比較大,我們可以運作多次該演算法,然後取多數回答正確的答案以取得比較高的準確率。詳細的分析顯示錯誤的下限可以高達1/2 − n−c或者低達2−nc,所包含的題目範圍均不會有變化。這裡c是一個正數的常數,n是輸入的長度。.

查看 PP (複雜度)和BQP (複雜度)

NP完全

NP完全或NP完備(NP-Complete,縮寫為NP-C或NPC),是計算複雜度理論中,決定性問題的等級之一。NPC問題,是NP(非決定性多項式時間)中最難的決定性問題。因此NP完備問題應該是最不可能被化簡為P(多項式時間可決定)的決定性問題的集合。若任何NPC問題得到多項式時間的解法,那此解法就可應用在所有NP問題上。更詳細的定義容下敘述。 一個NPC問題的例子是子集合加總問題,題目為 這個問題的答案非常容易驗證,但目前沒有任何一個夠快的方法可以在合理的時間內(意即多項式時間)找到答案。只能一個個將它的子集取出來一一測試,它的時間複雜度是Ο(2n),n是此集合的元素數量。.

查看 PP (複雜度)和NP完全

PSPACE

PSPACE是计算复杂度理论中能被确定型图灵机利用多项式空间解决的判定问题集合,是Polynomial SPACE的简称。.

查看 PP (複雜度)和PSPACE

決定性問題

在可計算性理論與計算複雜性理論中,所謂的決定性問題(Decision problem)是一個在某些形式系統回答是或否的問題。例如:「給兩個數字x與y,x是否可以整除y?」便是決定性問題,此問題可回答是或否,且依據其x與y的值。 決定性問題與功能性問題(Function problem,或複雜型問題)密切相關,功能性問題的答案內容,較簡單的是與非複雜許多。範例問題:「給予一個正整數x,則哪些數可整除x?」 另一個與上述兩類問題相關的是最佳化問題(Optimization problem),此問題關心的是尋找特定問題的最佳答案。 解決決定性問題的方法稱為決策程式或演算法。一個針對決定性問題的演算法將說明給予參數x和y的情況下如何決定x是否整除y。若是某些決定性問題可以被一些演算法所解決,則稱此問題可決定。 計算複雜度的領域中,分類可決定問題的依據在於此問題有多難被解決。在此標準下,所謂的難是以解決某問題最有效率的演算法所花費的計算資源為依據。在遞迴理論中,非決定性問題由圖靈度決定,指的是一種在任何解答中隱含的不可計算性量詞。 計算性理論的研究集中在決定性問題上。在與功能性問題的等值問題中,並沒有失去其普遍性。.

查看 PP (複雜度)和決定性問題

另见

機率複雜度類